Team:Yale/Project
From 2014.igem.org
(10 intermediate revisions not shown) | |||
Line 118: | Line 118: | ||
</style> | </style> | ||
- | + | <!--main content --> | |
- | <table | + | <table width="1100px" align="center" style="margin-top:0px"> |
- | + | <!--welcome box --> | |
- | + | <tr> | |
- | + | <td style="border:none;" colspan="6" align="center" width="1100px"> | |
- | + | <div style="margin-top:50px"> </div> | |
- | + | <div class="callout"> | |
- | <h1 style="margin-top: | + | <h1 style="margin-top:22px; font-size:48px;">AMPersand: An Anti-Microbial Peptide Coating</h1> </div> |
- | + | </td> | |
- | + | </tr> | |
- | + | <!-- end welcome box --> | |
- | + | ||
- | + | ||
Line 176: | Line 174: | ||
</div> | </div> | ||
<tr> | <tr> | ||
- | <td colspan = "12"><p><center><strong>Video Walkthrough of our Project</ | + | <td colspan = "12"><p><center><strong><h2 style = "border-bottom:none">Video Walkthrough of our Project</h2></strong> |
<br /> | <br /> | ||
<iframe src="http://www.youtube.com/embed/H6iWGC0SrHE" width="600" height="450" align ="middle"></iframe></center> | <iframe src="http://www.youtube.com/embed/H6iWGC0SrHE" width="600" height="450" align ="middle"></iframe></center> | ||
- | + | </p> | |
</td> | </td> | ||
</tr> | </tr> | ||
Line 195: | Line 193: | ||
<li> | <li> | ||
<strong>A Modular Anti-Microbial Construct based on Mussel Foot Protein:</strong> <ul><li> | <strong>A Modular Anti-Microbial Construct based on Mussel Foot Protein:</strong> <ul><li> | ||
- | As our adhesive domain, we selected the mussel foot protein (mefp) consensus sequence mefp 1-mgfp 5-mefp-1, which was found to be effective in Lee <i>et al.</i>, 2008. At the N-terminus, we included a twin Strep-FLAG tag, used in the purification and isolation of our construct and that can be readily cleaved. The LL-37 antimicrobial peptide, which is short enough to be inserted via primer overhang, is linked via a 36 residue linker, which we believe is long enough not to engender any unforeseen structural interaction between our domains. On the other side of the foot protein, we included an sfGFP connected by a shorter linker, which will be used to assay presence and yield of construct. Using targeted primers, the construct can be amplified in its entirety, or only with the anti-microbial or GFP segment. Note that the entire construct was designed so that a variety of functional peptide domains can be substituted for LL-37 if desired. A diagram of our entire construct is presented below: </ul><br> | + | As our adhesive domain, we selected the mussel foot protein (mefp) consensus sequence mefp 1-mgfp 5-mefp-1, which was found to be effective in Lee <i>et al.</i>, 2008.<sup>8</sup> At the N-terminus, we included a twin Strep-FLAG tag, used in the purification and isolation of our construct and that can be readily cleaved. The LL-37 antimicrobial peptide, which is short enough to be inserted via primer overhang, is linked via a 36 residue linker, which we believe is long enough not to engender any unforeseen structural interaction between our domains. On the other side of the foot protein, we included an sfGFP connected by a shorter linker, which will be used to assay presence and yield of construct. Using targeted primers, the construct can be amplified in its entirety, or only with the anti-microbial or GFP segment. Note that the entire construct was designed so that a variety of functional peptide domains can be substituted for LL-37 if desired. A diagram of our entire construct is presented below: </ul><br> |
<center><img src="https://static.igem.org/mediawiki/2014/3/39/IGEM_construct_Design_wiki.png" height=150 width = auto></center> | <center><img src="https://static.igem.org/mediawiki/2014/3/39/IGEM_construct_Design_wiki.png" height=150 width = auto></center> | ||
<p> | <p> | ||
Line 212: | Line 210: | ||
</td> | </td> | ||
</tr> | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <td colspan="12"> | ||
+ | <div class = "tinycall"> | ||
+ | <h1><a href = "https://2014.igem.org/Team:Yale/MaterialsMethods">Materials and Methods</a> </h1> | ||
+ | </div> | ||
+ | <div class = "well"> | ||
+ | <p> | ||
+ | For a detailed description of our experimental design regarding the T7 expression system, anti-microbial peptide construct, and adhesion assays, see <a href = "https://2014.igem.org/Team:Yale/MaterialsMethods">materials and methods.</a> | ||
+ | </p> | ||
+ | </div> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <td colspan="12"> | ||
+ | <div class = "tinycall"> | ||
+ | <h1><a href = "https://2014.igem.org/Team:Yale/Results">Results</a> </h1> | ||
+ | </div> | ||
+ | <div class = "well"> | ||
+ | <p> | ||
+ | For a detailed description of our results, see <a href = "https://2014.igem.org/Team:Yale/Results">results.</a> | ||
+ | </p> | ||
+ | </div> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <td colspan="12"> | ||
+ | <div class = "tinycall"> | ||
+ | <h1><a href = "https://2014.igem.org/Team:Yale/Project/modeling">Modeling</a> </h1> | ||
+ | </div> | ||
+ | <div class = "well"> | ||
+ | <p> | ||
+ | We modeled theoretical bacterial population survival rates based on various points of anti-microbial peptide induction. See <a href = "https://2014.igem.org/Team:Yale/Project/modeling">modeling.</a> | ||
+ | </p> | ||
+ | </div> | ||
+ | </tr> | ||
+ | |||
+ | |||
+ | <tr> | ||
+ | <td colspan="12"> | ||
+ | <div class = "tinycall"> | ||
+ | <h1><a href = "https://2014.igem.org/Team:Yale/Parts">Submitted Parts</a> </h1> | ||
+ | </div> | ||
+ | <div class = "well"> | ||
+ | <p> | ||
+ | Our collection of submitted biobricks consists of: </p><p> | ||
+ | <ul> | ||
+ | <li>Mussel foot protein (MFP) 1-5-1 sequence [combination of Mytilus galloprovincialis Foot Protein 5 (Mgfp-5) and Mytilus Edulis Foot Protein 1 (Mefp-1)].</li> | ||
+ | <li>MFP with superfolder Green Fluorescence Protein (sfGFP).</li> | ||
+ | <li>MFP with our anti-microbial peptide, LL-37.</li> | ||
+ | <li>Entire construct of our anti-microbial adhesive peptide: 2XStrep_Flagtag--LL-37--Mussel Foot Protein--sfGFP.</li> | ||
+ | |||
+ | <a href = "https://2014.igem.org/Team:Yale/Parts">See here for more information on our Biobricks!</a> | ||
+ | </p> | ||
+ | </div> | ||
+ | </tr> | ||
+ | |||
+ | |||
+ | |||
+ | |||
<tr> | <tr> | ||
<td colspan="12"> | <td colspan="12"> | ||
Line 251: | Line 309: | ||
</td> | </td> | ||
</tr> | </tr> | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
Line 279: | Line 327: | ||
<li>Ramos, R., Domingues, L., and Gama, M. (2011) LL-37, a human antimicrobial peptide with immunomodulatory properties. 2, pp.693-1348, In: Science Against Microbial Pathogens: Communicating Current Research and Technological Advances. Formatex Research Center Publications. Badajoz, Spain. | <li>Ramos, R., Domingues, L., and Gama, M. (2011) LL-37, a human antimicrobial peptide with immunomodulatory properties. 2, pp.693-1348, In: Science Against Microbial Pathogens: Communicating Current Research and Technological Advances. Formatex Research Center Publications. Badajoz, Spain. | ||
<li>Salta, M., Wharton, J. A., Stoodley, P., Dennington, S.P., Goodes, L. R., & Werwinski, S., <i>et al.</i>. (2010). Designing biomimetic antifouling surfaces. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1929), 4729-4754. | <li>Salta, M., Wharton, J. A., Stoodley, P., Dennington, S.P., Goodes, L. R., & Werwinski, S., <i>et al.</i>. (2010). Designing biomimetic antifouling surfaces. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1929), 4729-4754. | ||
- | <li> | + | <li>H. Lee, S. M. Dellatore, W. M. Miller and P. B. Messersmith, "Mussel-Inspired Surface Chemistry for Multifunctional Coatings", Science, 318, 426-430, (2007). |
+ | Endy, Drew. Standard Registry of Parts. Massachusetts Institute of Technology. partsregistry.org. 2008. | ||
<li>Isaacs, Farren J., <i>et al.</i> "Precise manipulation of chromosomes in vivo enables genome-wide codon replacement." <i>Science</i> 333.6040 (2011): 348-353. <p> | <li>Isaacs, Farren J., <i>et al.</i> "Precise manipulation of chromosomes in vivo enables genome-wide codon replacement." <i>Science</i> 333.6040 (2011): 348-353. <p> | ||
<li>Sharan, Shyam K., Lynn C. Thomason, and Sergey G. Kuznetsov. "Recombineering: a homologous recombination-based method of genetic engineering." <i>Nature protocols</i> 4.2 (2009): 206-223. <p> | <li>Sharan, Shyam K., Lynn C. Thomason, and Sergey G. Kuznetsov. "Recombineering: a homologous recombination-based method of genetic engineering." <i>Nature protocols</i> 4.2 (2009): 206-223. <p> | ||
Line 295: | Line 344: | ||
<li>H Lee , NF Scherer, PB Messersmith. (2006) Single-Molecule Mechanics of Mussel Adhesion. Proc Natl Acad Sci; 103:12999-3003. | <li>H Lee , NF Scherer, PB Messersmith. (2006) Single-Molecule Mechanics of Mussel Adhesion. Proc Natl Acad Sci; 103:12999-3003. | ||
<li>M Yu, J Hwang, TJ Deming. (1999) Role of L-3,4-Dihydroxyphenylalanine in Mussel Adhesive Proteins. J. Am. Chem. Soc. 1999, 121, 5825-5826 | <li>M Yu, J Hwang, TJ Deming. (1999) Role of L-3,4-Dihydroxyphenylalanine in Mussel Adhesive Proteins. J. Am. Chem. Soc. 1999, 121, 5825-5826 | ||
+ | <li>Gao, Y., Zorman, S., Gundersen G., Xi, Z., Ma L., Sirinakis G., Rothman J.E., & Zhang Y. (2012) Single Reconstituted Neuronal SNARE Complexes Zipper in Three Distinct Stages. Science (New York, N.Y.) 337(6100):1340-1343 | ||
</tr> | </tr> |
Latest revision as of 03:55, 18 October 2014
AMPersand: An Anti-Microbial Peptide Coating |
|||||||||||
The ProblemA biofilm is a community of bacteria attached to a surface that exhibits high resistance to antibiotics and human immunity. Biofilm formation poses a serious threat to the medical and shipping industries in the following ways:
| |||||||||||
Our SolutionTo address this issue, we aimed to develop an anti-microbial adhesive peptide composed of two components. We envision these domains can be modulated to suit a variety of functional adhesive applications:
|
|||||||||||
Video Walkthrough of our Project |
|||||||||||
Project Goals
|
|||||||||||
For a detailed description of our experimental design regarding the T7 expression system, anti-microbial peptide construct, and adhesion assays, see materials and methods. | |||||||||||
For a detailed description of our results, see results. | |||||||||||
We modeled theoretical bacterial population survival rates based on various points of anti-microbial peptide induction. See modeling. | |||||||||||
Our collection of submitted biobricks consists of:
| |||||||||||
Additional Background Information
|
|||||||||||
References
|