Team:XMU-China/Project Modelling Intracellularmodel

From 2014.igem.org

(Difference between revisions)
 
Line 729: Line 729:
</br>
</br>
</p>
</p>
-
<p>Want to see more modelling: <a href="https://2014.igem.org/Team:XMU-China/Project_Modelling_sdmodel" target="_blank">Macroscopic Stimulus Diffusion Model</a href="https://2014.igem.org/Team:XMU-China/Project_Modelling_sdmodel" target="_blank">, <a href="https://2014.igem.org/Team:XMU-China/Project_Modelling_mmmodel" target="_blank">Microscopic Motion Model</a href="https://2014.igem.org/Team:XMU-China/Project_Modelling_mmmodel" target="_blank">.</p>
+
<p>Want to see more modellings: <a href="https://2014.igem.org/Team:XMU-China/Project_Modelling_sdmodel" target="_blank">Macroscopic Stimulus Diffusion Model</a href="https://2014.igem.org/Team:XMU-China/Project_Modelling_sdmodel" target="_blank">, <a href="https://2014.igem.org/Team:XMU-China/Project_Modelling_mmmodel" target="_blank">Microscopic Motion Model</a href="https://2014.igem.org/Team:XMU-China/Project_Modelling_mmmodel" target="_blank">.</p>
<p>
<p>
</br>
</br>

Latest revision as of 03:27, 18 October 2014

side_bar

INTRACELLULAR MODEL


The following functions are based on ordinary differential equations with Hill functions that captured the activation and repression of protein synthesis.

The intracellular species included cheZ (C or ZT), LacI (L), L-ara (A), IPTG (I).

Equations as follows[1][2]:

dC dt = α C 1+ ( L/ β L ) m 1 γ C

(a)

dL dt = α L 1+ ( I/ β I ) m 2 + α L A m 3 A m 3 + δ A m 3 γ L L

 

(b)

 

Parameters:

α----- protein synthesis rate( α C ,  α L )

β----- repression coefficient( β L ,  β I )

γ----- protein decay( γ C ,  γ L )

δ-----activation coefficient( δ A )      

m----- transcription factor cooperativity ( m 1 ,  m 2 ,  m 3 )    

With above two equations, the relation between stimuli and intracellular is built. With certain concentration of IPTG and L-arabinose, the concentration of cheZ (ZT) will get for the following modeling.


Want to see more modellings: Macroscopic Stimulus Diffusion Model, Microscopic Motion Model.



References

1. Song, K. Introduction to Synthetic Biology. Science Press.

2.Basu S, Gerchman Y, Collins C H, et al. A synthetic multicellular system for programmed pattern formation. Nature, 2005, 434: 1130-1134.