Team:ZJU-China/Solution
From 2014.igem.org
(One intermediate revision not shown) | |||
Line 53: | Line 53: | ||
</table> | </table> | ||
<!--main content --> | <!--main content --> | ||
- | + | <table> | |
+ | <tr> | ||
+ | <td><img src="https://static.igem.org/mediawiki/2014/4/47/ZJU_left_arow.png"> </img></td><td> <a href="https://2014.igem.org/Team:ZJU-China/Design">Previous: Circuit Design</a></td> | ||
+ | <td width=600px></td> | ||
+ | <td><a href="https://2014.igem.org/Team:ZJU-China/Modeling">Next: Modeling</a> </td><td><img src="https://static.igem.org/mediawiki/2014/1/19/ZJU_right_arow.png" > </img> </td> | ||
+ | </tr> | ||
+ | </table> | ||
</div> | </div> | ||
</div> | </div> | ||
</html> | </html> |
Latest revision as of 03:35, 18 October 2014
After reading the Circuit design and Working process of GeneSocket, you may understand how GeneSocket complete its aim: Circuit construction on chromosome. But is its ability only limited in constructing circuit like this?
Of course not!
We believe GeneSocket has the potential to construct innumerable circuits. But during the construction process, different circuit should have different strategies. It’s not that complicate as it sounds, we even build two standard parts (BBa_K1433009 & BBa_K1433010) to help you face most cases. Our software tools GS-BOX is also compatible with the mode we discuss bellow. Still, we can’t say all situation are included in this discussion, but base on our basic design and principle of GeneSocket, you can come up with best strategies by your own creativity.
Basic principle of GeneSocket
P1. Inserted parts must link with standard parts.(why?)
P2. The direct consequence of recombination must be the expression of Int.
Based on this two principles, let’s discuss three insertion modes. This three modes can combine most regular circuit thus answer lots of question of construction!
MODE 1 Simple parts |
MODE 2 promoter choice |
MODE 3 terminator With the methods that we have used above, we can solve most problems when we want to insert a gene-circuit into the chromosome. But sometimes the situation may be more complex. We cannot list all of the situations for you, but we have given you the tool and the idea to solve a new problem. Join the designers’ team and enjoy it! LAST BUT NOT LEAST, our software has considered all this three modes and will give answer respectively! So for most circuit constructions, using our GeneSocket and GS-BOX can be almost 100% automatic. That's also our main purpose: To make circuit construction simple! |
Previous: Circuit Design | Next: Modeling |