Team:Paris Bettencourt/Project/Odor Library

From 2014.igem.org

(Difference between revisions)
 
(52 intermediate revisions not shown)
Line 15: Line 15:
height : 300px;
height : 300px;
margin-top : 40px;
margin-top : 40px;
-
background-image : url("https://static.igem.org/mediawiki/2014/4/43/Something_fishy.png");
+
background-image : url("https://static.igem.org/mediawiki/2014/b/ba/Smell_of_roses.png");
        background-size : cover;
        background-size : cover;
background-color : transparent;
background-color : transparent;
Line 51: Line 51:
#headtable {
#headtable {
width : 92.5%;
width : 92.5%;
-
height : 300px;
+
height : 350px;
background : rgb(255,0,99);
background : rgb(255,0,99);
                 margin-right : 3.75%;
                 margin-right : 3.75%;
Line 63: Line 63:
                 align : justify;
                 align : justify;
}
}
 +
#headtable tr td a {
 +
              color : rgb(193,192,197);
 +
        }
#tablelien {
#tablelien {
width : 100%;
width : 100%;
Line 79: Line 82:
         #fond {
         #fond {
                 width : 100%
                 width : 100%
-
                 height : 300px;
+
                 height : 350px;
background : rgb(255,0,99);
background : rgb(255,0,99);
         }
         }
Line 182: Line 185:
                 text-align : justify;
                 text-align : justify;
         }
         }
 +
table.tableizer-table {
 +
border: 1px solid #CCC; font-family: Arial, Helvetica, sans-serif
 +
font-size: 12px;
 +
}
 +
.tableizer-table td {
 +
padding: 4px;
 +
margin: 3px;
 +
border: 1px solid #ccc;
 +
}
 +
.tableizer-table th {
 +
background-color: #FA0063;
 +
color: #FFF;
 +
font-weight: bold;
 +
}
</style>
</style>
<body>
<body>
Line 197: Line 214:
<p class=text1><left>We standardized and simplified existing smell-producing BioBricks for banana, wintergreen, lemon and rain. Also, we created new BioBricks for the aromas of popcorn and jasmine. We made an odor wheel made out of genetic odors that follow a standard organization so that the general public can play with odor genes.</left></li></ul></p></td>
<p class=text1><left>We standardized and simplified existing smell-producing BioBricks for banana, wintergreen, lemon and rain. Also, we created new BioBricks for the aromas of popcorn and jasmine. We made an odor wheel made out of genetic odors that follow a standard organization so that the general public can play with odor genes.</left></li></ul></p></td>
<td><b><center>ACHIEVEMENTS</center></b></br><br>
<td><b><center>ACHIEVEMENTS</center></b></br><br>
-
<p class=text1><ul><li> Created BioBricks coding for sequences for different enzymes to nullify the bad odor produced by <i>E. coli.</i></li> <li>We produced the smells that compose the main odor categories perceived by humans.</li> <li>BioBricks submitted to be BioBrick registry:BBa_K1403003, BBa_K1403006, BBa_K1403009,   BBa_K1403012, BBa_K1403017, BBa_K1403019</li> </p></td>
+
<p class=text1><ul><li> Created BioBricks coding for sequences for different enzymes to nullify the bad odor produced by <i>E. coli.</i></li> <li>We produced the smells that compose the main odor categories perceived by humans.</li> <li>BioBricks submitted to be BioBrick registry: <a href="http://parts.igem.org/Part:BBa_K1403003">BBa_K1403003</a>, <a href="http://parts.igem.org/Part:BBa_K1403006">BBa_K1403006</a>, <a href="http://parts.igem.org/Part:BBa_K1403009">BBa_K1403009</a>, <a href="http://parts.igem.org/Part:BBa_K1403012">BBa_K1403012</a>, <a href="http://parts.igem.org/Part:BBa_K1403017">BBa_K1403017</a>, <a href="http://parts.igem.org/Part:BBa_K1403019">BBa_K1403019</a></li> </p></td>
</tr>
</tr>
</table>
</table>
Line 211: Line 228:
<div id=part1 class=project>
<div id=part1 class=project>
-
<h6>Introduction</h6><br>
+
<p class=text2>
-
<p class=text1>Detection of chemical signals from the environment is an intrinsic property of all living organisms (Bargmann 2006). Olfaction is a highly complex phenomena where relations among the stereochemistry of volatile compounds, their ratio within a particular mix, the amount of active olfactory receptors expressed in the smeller, as well as the distribution, and interaction of the different olfactory receptor neurons (ORNs) sum up to generate what we perceive as odor (Buck & Axel 1991; Buck 2004; Lundström & Olsson 2013).  
+
<img src="https://static.igem.org/mediawiki/2014/5/56/ODOR_WHEEL.png">
 +
<b>Figure 1. Odor palette composed of BioBricks containing coding sequences for different enzymes known to catalyze reactions that yield volatile compounds with distinctive smells. We included odors with different tonalities in order to explore the aromas resulting from different combinations of smelly units. The tonality of each smell is categorized as butter, balminess, citrus, non-citrus fruit and herbal. These cover half of the main odor categories perceivable to human beings.</b> </br>
 +
</br></br></br></br></br></br>
 +
</p>
 +
<h6>Introduction</h6>
 +
<br>
 +
<p class=text1>All living things can detect chemical signals from the environment. In humans, the direct chemical sense takes the form of olfaction. Although our sense of smell is less sensitive than that of other mammals, it is still capable of detecting many compounds at concentrations lower than 1 part per million. Odors can trigger emotional responses and memory associations, making them a very direct and visceral way to experience the environment. <br>
 +
<br>
-
Odors spark neurochemical signals that are processed in different areas of the brain; they trigger complex cognitive processes that affect emotional responses such as motivation and memory (Lenochová et al. 2012). Interestingly, environmental variables such as visual cues and individual variables such as context and diet play a role in odor perception (Gottfried & Dolan 2003; Kuang & Zhang 2014).
+
Bacterial enzymes can produce volatile compounds, including many that are surprising and fun. A generation of iGEMers has had the chance to experience bacteria that smell like <a href="BBa_J45200">banana</a> or <a href="BBa_J45200">mint</a>. The goal of this project is to expand the range of odors that can be created with synthetic enzymes. An easy-to-use, standardized genetic odor library will empower a new generation to play with synthetic biological smells.  
 +
</p></div>
 +
<div id=part2 class=project>
-
Although the precise molecular mechanisms behind odor perception have not been fully understood (Brookes et al. 2007), there has been significant advance in the biosynthesis and applications of organic volatile compounds using bacterial and fungal systems (Korpi et al. 1998; Weisskopf 2013; Callewaert et al. 2014).
+
<p class=text2>
 +
<img src="https://static.igem.org/mediawiki/2014/d/dd/Smellybricks.png"  | width='100px'>
 +
<b>Figure 2. Basic structure of the odor cassettes: iGEM prefix, <a href="http://parts.igem.org/Part:BBa_J23108">constitutive promoter</a>, synthetic ribosome-binding site, coding sequence with his tag, and iGEM suffix </b> </br>
 +
</p>
 +
<h6>Results</h6>
 +
<br>
 +
<p class=text1>
 +
We created BioBricks coding for sequences of different enzymes to explore each of the odors described in the palette. These sequences are codon-optmized for produced expression in <i>E. coli</i> and produce the smells that compose the main odor categories perceived by humans. </p>
 +
</div>
 +
<div id=part3 class=project>
 +
<h6>Methods</h6>
 +
<br>
 +
<p class=text1>
 +
Odorless <i>E. coli</i>:
 +
<br>
 +
The tnaA deletion mutant <i>E. coli</i> was taken from location 63:E:9 in the Keio collection. Standard microbiology techniques were used to culture it in liquid and solid media. Subsequently, a single colony was taken to make a batch of Ca2Cl chemically competent cells using.
 +
<br>
 +
<br>
 +
BioBricks:
 +
<br>
 +
The coding sequences for <a href="http://parts.igem.org/Part:BBa_J45119">BMST1</a>,<a href="http://parts.igem.org/Part:BBa_J45199">ATF1</a>, <a href="http://parts.igem.org/Part:BBa_I742111">LIMS1</a> and <a href="http://parts.igem.org/Part:BBa_K221000">GGS</a> were extracted from the Registry. The ATF1 and LIMS1 generator BioBricks were taken from previous iGEM distribution kits and were cloned into the pSB1C3 vector downstream of BBa_J23108 constitutive promoter. The BMST1, JMT, and GDS sequences were codon optimized for expression in <i>E. coli</i>. A synthetic ribosome-binding site that includes XmaI and AgeI flanking restriction sites was designed using the RBS calculator from the Salis’ lab. All BioBricks were assembled using standard molecular biology cloning techniques and 3A iGEM assembly. 
 +
<br>
 +
<br>
 +
Characterization:
 +
<br>
 +
Transformed <i>E. coli</i> was grown in M9 minimal media with 2% glucose and complete amino acid mix overnight with the appropriate substrate.
 +
<table class="tableizer-table">
 +
<tr class="tableizer-firstrow"><th>System</th><th>Enzyme</th><th>Substrate</th><th>Concentration</th><th>Product</th></tr>
 +
<tr><td>Jasmine</td><td>JMT</td><td>Jasmonic acid</td><td>1 mM</td><td>Methyl jasmonate</td></tr>
 +
<tr><td>Mint</td><td>BMST1</td><td>Salicylic acid</td><td>2 mM</td><td>Methyl salicylate</td></tr>
 +
<tr><td>Banana</td><td>ATF1</td><td>Isoamyl alcohol</td><td>5 mM</td><td>Isoamyl acetate</td></tr>
 +
<tr><td>Limonene</td><td>LIMS1</td><td>Farnesyl diphosphate</td><td>Natural</td><td>(+)-Limonene</td></tr>
 +
<tr><td>Rain</td><td>G/G D-synthase</td><td>Farnesyl diphosphate</td><td>Natural</td><td>Geosmin</td></tr>
 +
<tr><td>Flowers</td><td>BMST1</td><td>Benzoic acid</td><td>5 mM</td><td>Methyl benzoate</td></tr>
 +
<tr><td>Butter</td><td>AldB</td><td>Acetolactic acid</td><td>-</td><td>Acetoin</td></tr>
 +
<tr><td>Sweat</td><td>agaA</td><td>3-M-2-hexenoic acid</td><td>-</td><td>3-HO-3-Methylhexanoic acid</td></tr>
 +
</table>
 +
<b>Table 1. Substrate concentrations (mM).</b> </br>
-
Escherichia coli naturally produces indole, an aromatic compound that contributes to the aroma of stool. An E. coli mutant with a deletion of the tnaA gene will not express tryptophanase (TnaA) and therefore won’t produce indole (Li & Young 2013). This mutant can be found in the Keio collection of single-gene knockout mutants (Baba et al. 2006) and was used as the odorless E. coli chassis for the “Smell the roses” library.
 
-
.  </p>
 
-
 
-
<h6>Results</h6><br>
 
-
<p class=text1>We created BioBricks coding for sequences of different enzymes to explore each of the odors described in the palette. These sequences are codon-optmized for produced expression in E. coli and produce the smells that compose the main odor categories perceived by humans. </p>
 
-
 
-
<h6>Methods</h6><br>
 
-
<p class=text1>Odorless E. coli:
 
-
The tnaA deletion mutant E. coli was taken from location 63:E:9 in the Keio collection. Standard microbiology techniques were used to culture it in liquid and solid media. Subsequently, a single colony was taken to make a batch of Ca2Cl chemically competent cells using.
 
-
 
-
BioBricks:
 
-
The coding sequences for BMST1, ATF1, GGS and LIMS1 were extracted from the Registry. The ATF1 and LIMS1 generator BioBricks were taken from previous iGEM distribution kits and were cloned into the pSB1C3 vector downstream of BBa_J23108 constitutive promoter. The sequences were codon optimized for expression in E. coli and a synthetic ribosome-binding site was designed using the RBS calculator from the Salis’ lab. All BioBricks were assembled using standard molecular biology cloning techniques and 3A iGEM assembly. 
 
  </p>
  </p>
</div>
</div>

Latest revision as of 15:56, 3 December 2014

BACKGROUND


Synthetic enzymes can produce odors that humans experience directly, without special instruments. The banana and wintergreeen smell BioBricks are iGEM icons, and a favorite way to introduce genetic engineering. An expanded library of easy-to-use odor enzymes would take synthetic biology to new audiences for creativity, beauty and fun!

AIMS


We standardized and simplified existing smell-producing BioBricks for banana, wintergreen, lemon and rain. Also, we created new BioBricks for the aromas of popcorn and jasmine. We made an odor wheel made out of genetic odors that follow a standard organization so that the general public can play with odor genes.

ACHIEVEMENTS


Introduction Results Methods

Figure 1. Odor palette composed of BioBricks containing coding sequences for different enzymes known to catalyze reactions that yield volatile compounds with distinctive smells. We included odors with different tonalities in order to explore the aromas resulting from different combinations of smelly units. The tonality of each smell is categorized as butter, balminess, citrus, non-citrus fruit and herbal. These cover half of the main odor categories perceivable to human beings.






Introduction

All living things can detect chemical signals from the environment. In humans, the direct chemical sense takes the form of olfaction. Although our sense of smell is less sensitive than that of other mammals, it is still capable of detecting many compounds at concentrations lower than 1 part per million. Odors can trigger emotional responses and memory associations, making them a very direct and visceral way to experience the environment.

Bacterial enzymes can produce volatile compounds, including many that are surprising and fun. A generation of iGEMers has had the chance to experience bacteria that smell like banana or mint. The goal of this project is to expand the range of odors that can be created with synthetic enzymes. An easy-to-use, standardized genetic odor library will empower a new generation to play with synthetic biological smells.

Figure 2. Basic structure of the odor cassettes: iGEM prefix, constitutive promoter, synthetic ribosome-binding site, coding sequence with his tag, and iGEM suffix

Results

We created BioBricks coding for sequences of different enzymes to explore each of the odors described in the palette. These sequences are codon-optmized for produced expression in E. coli and produce the smells that compose the main odor categories perceived by humans.

Methods

Odorless E. coli:
The tnaA deletion mutant E. coli was taken from location 63:E:9 in the Keio collection. Standard microbiology techniques were used to culture it in liquid and solid media. Subsequently, a single colony was taken to make a batch of Ca2Cl chemically competent cells using.

BioBricks:
The coding sequences for BMST1,ATF1, LIMS1 and GGS were extracted from the Registry. The ATF1 and LIMS1 generator BioBricks were taken from previous iGEM distribution kits and were cloned into the pSB1C3 vector downstream of BBa_J23108 constitutive promoter. The BMST1, JMT, and GDS sequences were codon optimized for expression in E. coli. A synthetic ribosome-binding site that includes XmaI and AgeI flanking restriction sites was designed using the RBS calculator from the Salis’ lab. All BioBricks were assembled using standard molecular biology cloning techniques and 3A iGEM assembly.

Characterization:
Transformed E. coli was grown in M9 minimal media with 2% glucose and complete amino acid mix overnight with the appropriate substrate.

SystemEnzymeSubstrateConcentrationProduct
JasmineJMTJasmonic acid1 mMMethyl jasmonate
MintBMST1Salicylic acid2 mMMethyl salicylate
BananaATF1Isoamyl alcohol5 mMIsoamyl acetate
LimoneneLIMS1Farnesyl diphosphateNatural(+)-Limonene
RainG/G D-synthaseFarnesyl diphosphateNaturalGeosmin
FlowersBMST1Benzoic acid5 mMMethyl benzoate
ButterAldBAcetolactic acid-Acetoin
SweatagaA3-M-2-hexenoic acid-3-HO-3-Methylhexanoic acid
Table 1. Substrate concentrations (mM).

Centre for Research and Interdisciplinarity (CRI)
Faculty of Medicine Cochin Port-Royal, South wing, 2nd floor
Paris Descartes University
24, rue du Faubourg Saint Jacques
75014 Paris, France
+33 1 44 41 25 22/25
paris-bettencourt-igem@googlegroups.com
Copyright (c) 2014 igem.org. All rights reserved.