Team:NJU-QIBEBT/Indicator module
From 2014.igem.org
MoriBreeze (Talk | contribs) |
|||
(8 intermediate revisions not shown) | |||
Line 4: | Line 4: | ||
<title></title> | <title></title> | ||
<meta charset="utf-8"> | <meta charset="utf-8"> | ||
- | |||
<script type="text/javascript"> | <script type="text/javascript"> | ||
$(function(){ | $(function(){ | ||
Line 160: | Line 159: | ||
left: 50%; | left: 50%; | ||
margin-left: 500px; | margin-left: 500px; | ||
- | width: | + | width: 110px; |
- | height: | + | height: 110px; |
bottom: 30px; | bottom: 30px; | ||
background: url("https://static.igem.org/mediawiki/2014/8/86/Still_superman-f.png"); | background: url("https://static.igem.org/mediawiki/2014/8/86/Still_superman-f.png"); | ||
Line 214: | Line 213: | ||
background:url("https://static.igem.org/mediawiki/2014/3/30/NJU_Bac.jpg"); | background:url("https://static.igem.org/mediawiki/2014/3/30/NJU_Bac.jpg"); | ||
} | } | ||
+ | #main .refer p{ | ||
+ | font-size:12px;} | ||
#main{ | #main{ | ||
z-index: 99; | z-index: 99; | ||
Line 261: | Line 262: | ||
margin-bottom: 30px; | margin-bottom: 30px; | ||
margin-left: 30px; | margin-left: 30px; | ||
- | + | ||
+ | |||
+ | |||
} | } | ||
#main h1{ | #main h1{ | ||
Line 332: | Line 335: | ||
</li> | </li> | ||
<li class="menu"><a href="/Team:NJU-QIBEBT/humanPractice">HUMAN PRACTICE</a></li> | <li class="menu"><a href="/Team:NJU-QIBEBT/humanPractice">HUMAN PRACTICE</a></li> | ||
- | <li class="menu"><a href="/Team:NJU-QIBEBT/SAFETY">SAFETY</a></li> | + | <li class="menu"><a href="/Team:NJU-QIBEBT/SAFETY">ETHICS AND SAFETY</a></li> |
<li class="menu"><a href="/Team:NJU-QIBEBT/team">TEAM</a> | <li class="menu"><a href="/Team:NJU-QIBEBT/team">TEAM</a> | ||
<ul> | <ul> | ||
Line 363: | Line 366: | ||
<p>In E.coli, the fad genes family is responsible for fatty acid degradation while the genes family fab works in the synthetic pathway. The protein FadR is a regulator. Generally, it binds to the promoters of fadD and fabB, and works as repressor and activator, respectively. In the absence of long chain acyl-CoA, FadR will repress the fad regulon, activating the transcription of fabB and starting the fatty acid synthesis. Otherwise, the binding of long chain acyl-CoA to FadR will dramatically change the structure of this protein and FadR will be released from the operator site. Then the fad regulon transcription increases whereas that of fabB decreases. In this case, redundant fatty acids can be degraded for other usage. | <p>In E.coli, the fad genes family is responsible for fatty acid degradation while the genes family fab works in the synthetic pathway. The protein FadR is a regulator. Generally, it binds to the promoters of fadD and fabB, and works as repressor and activator, respectively. In the absence of long chain acyl-CoA, FadR will repress the fad regulon, activating the transcription of fabB and starting the fatty acid synthesis. Otherwise, the binding of long chain acyl-CoA to FadR will dramatically change the structure of this protein and FadR will be released from the operator site. Then the fad regulon transcription increases whereas that of fabB decreases. In this case, redundant fatty acids can be degraded for other usage. | ||
</p> | </p> | ||
- | <img src="https://static.igem.org/mediawiki/2014/8/88/Yuanli.png"> | + | <img src="https://static.igem.org/mediawiki/2014/8/88/Yuanli.png" width="80%"> |
<h3>Our circuit | <h3>Our circuit | ||
</h3> | </h3> | ||
<p>Based on this, we built an indicator structure similar to traffic light by introducing the gfp and rfp genes. As is known, pfadD and pfabB were the promoters of fadD and fabB which we isolated from wide-type E.coli. After assembling them with two fluorescent genes at their downstream(as shown in the figure below), they could regulate the transcription of rfp and gfp through the general concentration of fatty acid. | <p>Based on this, we built an indicator structure similar to traffic light by introducing the gfp and rfp genes. As is known, pfadD and pfabB were the promoters of fadD and fabB which we isolated from wide-type E.coli. After assembling them with two fluorescent genes at their downstream(as shown in the figure below), they could regulate the transcription of rfp and gfp through the general concentration of fatty acid. | ||
</p> | </p> | ||
- | <img src="https://static.igem.org/mediawiki/2014/0/01/Hongld.png"> | + | <img src="https://static.igem.org/mediawiki/2014/0/01/Hongld.png" width="500px"> |
- | <p>When high concentration of fatty acid have been produced, which means long chain acyl-CoA could be produced, FadR would dissociate from the binding site and the “red light" would be turned on (RFP would be expressed). In contrast, in the situation that concentration of fatty acid is low, there isn’t | + | <p>When high concentration of fatty acid have been produced, which means long chain acyl-CoA could be produced, FadR would dissociate from the binding site and the “red light" would be turned on (RFP would be expressed). In contrast, in the situation that concentration of fatty acid is low, there isn’t acyl-CoA binding to FadR to shift its conformation. Hence FadR tightly binds to the operator site and the green light will be turned on (with GFP expression). |
</p> | </p> | ||
- | <img src="https://static.igem.org/mediawiki/2014/4/4e/R%2BG_comic.png"> | + | <img src="https://static.igem.org/mediawiki/2014/4/4e/R%2BG_comic.png" width="80%" > |
<h3>Reference | <h3>Reference | ||
</h3> | </h3> | ||
+ | <div class="refer"> | ||
<p>1. Yasutaro F, Hiroshi M, Kazutake H: Regulation of fatty acid metabolism in bacteria. Molecular Microbiology 2007, 66(4):829–839 | <p>1. Yasutaro F, Hiroshi M, Kazutake H: Regulation of fatty acid metabolism in bacteria. Molecular Microbiology 2007, 66(4):829–839 | ||
</p> | </p> | ||
Line 383: | Line 387: | ||
<p>4. Feng Y, Cronan JE: Crosstalk of Escherichia coli FadR with Global Regulators in Expression of Fatty Acid Transport Genes. PLOS ONE 7(9): e46275 | <p>4. Feng Y, Cronan JE: Crosstalk of Escherichia coli FadR with Global Regulators in Expression of Fatty Acid Transport Genes. PLOS ONE 7(9): e46275 | ||
</p> | </p> | ||
+ | </div> | ||
</div> | </div> | ||
Line 388: | Line 393: | ||
<div id="footerContent"> | <div id="footerContent"> | ||
<div id="footerLeft"> | <div id="footerLeft"> | ||
- | <img src="https://static.igem.org/mediawiki/2014/ | + | <img src="https://static.igem.org/mediawiki/2014/5/58/Nanjing_university_ack.jpg"> |
- | + | ||
<img src="https://static.igem.org/mediawiki/2014/5/50/M3-Acknowledgement11.png" > | <img src="https://static.igem.org/mediawiki/2014/5/50/M3-Acknowledgement11.png" > | ||
+ | |||
+ | <img src="https://static.igem.org/mediawiki/2014/2/28/M3-Acknowledgement1.png" > | ||
+ | <img src="https://static.igem.org/mediawiki/2014/f/f7/QIBEBT.jpg" > | ||
+ | |||
</div> | </div> | ||
Line 405: | Line 413: | ||
</div> | </div> | ||
</div> | </div> | ||
- | <a href="#" id="back_to_top"></a> | + | <a href="#" id="back_to_top"><span></span></a> |
</body> | </body> | ||
</html> | </html> |
Latest revision as of 03:43, 18 October 2014
Indicator module
In this module, we try to figure out a method to monitor the fatty acids producing status. Specifically, not only could our E.coil automatically “inform” us of when fatty acids have been produced greatly, but it could also “show” us the relative concentration of fatty acids compared to control E.coli. To fulfill this objective, we need to find out something sensitive to fatty acids amounts in E.coli. Thus, we noticed the native regulatory system in E.coli fatty acids metabolism..
Working principle
In E.coli, the fad genes family is responsible for fatty acid degradation while the genes family fab works in the synthetic pathway. The protein FadR is a regulator. Generally, it binds to the promoters of fadD and fabB, and works as repressor and activator, respectively. In the absence of long chain acyl-CoA, FadR will repress the fad regulon, activating the transcription of fabB and starting the fatty acid synthesis. Otherwise, the binding of long chain acyl-CoA to FadR will dramatically change the structure of this protein and FadR will be released from the operator site. Then the fad regulon transcription increases whereas that of fabB decreases. In this case, redundant fatty acids can be degraded for other usage.
Our circuit
Based on this, we built an indicator structure similar to traffic light by introducing the gfp and rfp genes. As is known, pfadD and pfabB were the promoters of fadD and fabB which we isolated from wide-type E.coli. After assembling them with two fluorescent genes at their downstream(as shown in the figure below), they could regulate the transcription of rfp and gfp through the general concentration of fatty acid.
When high concentration of fatty acid have been produced, which means long chain acyl-CoA could be produced, FadR would dissociate from the binding site and the “red light" would be turned on (RFP would be expressed). In contrast, in the situation that concentration of fatty acid is low, there isn’t acyl-CoA binding to FadR to shift its conformation. Hence FadR tightly binds to the operator site and the green light will be turned on (with GFP expression).
Reference
1. Yasutaro F, Hiroshi M, Kazutake H: Regulation of fatty acid metabolism in bacteria. Molecular Microbiology 2007, 66(4):829–839
2. Liu H, Yu C, Feng D, Cheng T, Meng X, Liu W, Zou H, Xian M: Production of extracellular fatty acid using engineered Escherichia coli. Microbial Cell Factories 2012, 11:41-53
3. Yasutaro F, Hiroshi M, Kazutake H: Regulation of fatty acid metabolism in bacteria. Molecular Microbiology 2007, 66(4):829–839
4. Feng Y, Cronan JE: Crosstalk of Escherichia coli FadR with Global Regulators in Expression of Fatty Acid Transport Genes. PLOS ONE 7(9): e46275