|
|
(19 intermediate revisions not shown) |
Line 11: |
Line 11: |
| | | |
| <title>Safie by Technion-Israel</title> | | <title>Safie by Technion-Israel</title> |
- | <meta http-equiv="content-type" content="text/html; charset=utf-8" /> | + | <meta http-equiv="content-type" content="textwhy/html; charset=utf-8" /> |
| <meta name="description" content="" /> | | <meta name="description" content="" /> |
| <meta name="keywords" content="" /> | | <meta name="keywords" content="" /> |
Line 172: |
Line 172: |
| <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Project#azo">Azobenzene</a></li> | | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Project#azo">Azobenzene</a></li> |
| <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Project#hk">Histidine Kinase</a></li> | | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Project#hk">Histidine Kinase</a></li> |
- | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Project#newmethod">New Method</a></li> | + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Project#newmethod">New Standard</a></li> |
| <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Project#protocol">Protocols</a></li> | | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Project#protocol">Protocols</a></li> |
| <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Project#notebook">Lab Notebook</a></li> | | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Project#notebook">Lab Notebook</a></li> |
Line 180: |
Line 180: |
| <li id="parent"><a href="https://2014.igem.org/Team:Technion-Israel/Modeling">Modeling</a> | | <li id="parent"><a href="https://2014.igem.org/Team:Technion-Israel/Modeling">Modeling</a> |
| <ul class="sub1"> | | <ul class="sub1"> |
- | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Modeling#whyworks">Why should it work</a></li> | + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Modeling#whyworks">Why it should work</a></li> |
- | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Modeling#whyfail">Why should it fail</a></li> | + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Modeling#whyfail">Why it should fail</a></li> |
| <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Modeling#splint">RNA Splint</a></li> | | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Modeling#splint">RNA Splint</a></li> |
| <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Modeling#biofilm">Synthetic Biofilm<br>Formation</a></li> | | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Modeling#biofilm">Synthetic Biofilm<br>Formation</a></li> |
Line 232: |
Line 232: |
| <ul class="sub1"> | | <ul class="sub1"> |
| <li id="child1"><a href="https://igem.org/2014_Judging_Form?id=1343" target="_blank">Judging Form</a></li> | | <li id="child1"><a href="https://igem.org/2014_Judging_Form?id=1343" target="_blank">Judging Form</a></li> |
- | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Judging#results">Results</a></li>
| |
| <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Judging#biobrick">BioBricks</a></li> | | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Judging#biobrick">BioBricks</a></li> |
- | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Judging#criteria">Judging Criteria</a></li> | + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Judging#results">Results</a></li> |
| </ul> | | </ul> |
| </li> | | </li> |
Line 313: |
Line 312: |
| As we mentioned in the section on gate 1, LuxI transcription results in AHL molecules.<br><br><br> | | As we mentioned in the section on gate 1, LuxI transcription results in AHL molecules.<br><br><br> |
| </p> | | </p> |
| + | <p style="font-size: 1.2em;">We experienced many difficulties in building this gate. Therefore we built an alternative Gate 2-Gate 3 construct: Pcat_luxR_Plux_mCherry_luxI<br><br></p> |
| <h3 style="font-size: 1.5em; line-height:1.75em"><br>In conclusion, the Alpha System is a 3 gate construct that produces GFP when a substance is detected and signals the other cells around it to produce GFP as well<br><br></h2> | | <h3 style="font-size: 1.5em; line-height:1.75em"><br>In conclusion, the Alpha System is a 3 gate construct that produces GFP when a substance is detected and signals the other cells around it to produce GFP as well<br><br></h2> |
| <p style="font-size: 1.2em;"><img src="https://static.igem.org/mediawiki/2014/8/8a/Technion-Israel-alphastream.jpg"></p> | | <p style="font-size: 1.2em;"><img src="https://static.igem.org/mediawiki/2014/8/8a/Technion-Israel-alphastream.jpg"></p> |
Line 327: |
Line 327: |
| <center><h2 style="box-shadow:0px 0px 1px 1px rgba(0,0,0,0.25); border-radius:0.35em; font-weight:700; padding:1em; font-size:2em;">Beta System</h2> | | <center><h2 style="box-shadow:0px 0px 1px 1px rgba(0,0,0,0.25); border-radius:0.35em; font-weight:700; padding:1em; font-size:2em;">Beta System</h2> |
| <p style="line-height:1.75em;"> | | <p style="line-height:1.75em;"> |
- | According to the model <a href="https://2014.igem.org/Team:Technion-Israel/Modeling#whyfail">"Why Should it Fail"</a> of the Alpha System, we can see that it has some problems. We decided to test new methods to reduce the noise in our system. One idea was a new design – the Beta System, inspired by the noise reduction mechanism described by Goni-Moreno and Amos. (Goni-Moreno & Amos, 2012). | + | <img src="https://static.igem.org/mediawiki/2014/0/00/Technion-Israel-Beta_System.png" width="1100px"><br> |
| + | According to the model <a href="https://2014.igem.org/Team:Technion-Israel/Modeling#whyfail">"Why it Should Fail"</a> of the Alpha System, we can see that it has some problems. We decided to test new methods to reduce the noise in our system. One idea was a new design – the Beta System, inspired by the noise reduction mechanism described by Goni-Moreno and Amos. (Goni-Moreno & Amos, 2012). |
| We used a double repression Toggle Switch similar to that described by Gardner et al. (Gardner, Cantor, & Collins, 2000)), to filter the inputs of our system. This makes the cell-to-cell communication more accurate, while affording them an internal memory capacity.<br> | | We used a double repression Toggle Switch similar to that described by Gardner et al. (Gardner, Cantor, & Collins, 2000)), to filter the inputs of our system. This makes the cell-to-cell communication more accurate, while affording them an internal memory capacity.<br> |
| This system consists of three main circuits:<br> | | This system consists of three main circuits:<br> |
Line 336: |
Line 337: |
| | | |
| <h1 style="font-size: 1.2em;">Computation Circuit</h1> | | <h1 style="font-size: 1.2em;">Computation Circuit</h1> |
| + | <img src="https://static.igem.org/mediawiki/2014/a/aa/Technion-Israel-Computational_Circuit.png"><br> |
| <p style="line-height:1.75em;"> | | <p style="line-height:1.75em;"> |
| The Computation Circuit has been programmed to function as an OR gate:<br> | | The Computation Circuit has been programmed to function as an OR gate:<br> |
Line 360: |
Line 362: |
| <b>(1)</b> LuxR, a protein which binds to AHL (a "receiver").<br> | | <b>(1)</b> LuxR, a protein which binds to AHL (a "receiver").<br> |
| <b>(2)</b> A genetic gate which can produce large amounts of AHL (an "antenna").<br> | | <b>(2)</b> A genetic gate which can produce large amounts of AHL (an "antenna").<br> |
- | <img src="https://static.igem.org/mediawiki/2014/7/74/Technion-Israel-betaSC.png"><br> | + | <img src="https://static.igem.org/mediawiki/2014/7/74/Technion-Israel-betaSC.png"> |
- | <b>This circuit contains two parts:</b><br> | + | <b><br><br>This circuit contains two parts:</b><br> |
| The first part consists of the promoter Pcat, a constitutive promoter, which regulates LuxR expression in excess at all times. The LuxR protein can bind to AHL produced by neighboring cells, activating the Computational Circuit.<br> | | The first part consists of the promoter Pcat, a constitutive promoter, which regulates LuxR expression in excess at all times. The LuxR protein can bind to AHL produced by neighboring cells, activating the Computational Circuit.<br> |
| The second part consists of the promoter, PT7 RNA polymerase, which is controlled by the T7 polymerase synthesized by the Toggle Switch, and regulates the expression of LuxI – an enzyme that produces AHL. When the PT7 promoter is activated, it produces large amounts of AHL. This amplifies the signal produced by the toggle switch, before it is diffuses out through the lossy channel.<br> | | The second part consists of the promoter, PT7 RNA polymerase, which is controlled by the T7 polymerase synthesized by the Toggle Switch, and regulates the expression of LuxI – an enzyme that produces AHL. When the PT7 promoter is activated, it produces large amounts of AHL. This amplifies the signal produced by the toggle switch, before it is diffuses out through the lossy channel.<br> |
Line 386: |
Line 388: |
| To screen for the positive colony with the positive RNA splint and the functionality of LuxI, the detector strain assay will be done (the same screening method from gate 1)<br></p> | | To screen for the positive colony with the positive RNA splint and the functionality of LuxI, the detector strain assay will be done (the same screening method from gate 1)<br></p> |
| | | |
- | <h1>LuxI-Inspiration</h1> | + | <h1><br><br>LuxI-Inspiration</h1> |
| <p><b>RNA splint:</b> bridges between A protein RNA and B protein RNA. The splint enables the ligation of two RNA molecules. In order for the ligation of the 2 RNA molecules to occur a T4 RNA ligase is needed. T4 RNA Ligase is the enzyme from the phage that makes this ligation between two RNA molecules, it recognizes a specific site (this will be addressed later on). This is the preferable method.<br> | | <p><b>RNA splint:</b> bridges between A protein RNA and B protein RNA. The splint enables the ligation of two RNA molecules. In order for the ligation of the 2 RNA molecules to occur a T4 RNA ligase is needed. T4 RNA Ligase is the enzyme from the phage that makes this ligation between two RNA molecules, it recognizes a specific site (this will be addressed later on). This is the preferable method.<br> |
- | <b>The design using luxI:</b> | + | <b>The design using luxI:</b><br><br> |
| <img src="https://static.igem.org/mediawiki/2014/4/4b/Technion-Israel-RNALuxI.png"><br></p> | | <img src="https://static.igem.org/mediawiki/2014/4/4b/Technion-Israel-RNALuxI.png"><br></p> |
- | <h1>CM Resistance</h1> | + | <h1><br><br>CM Resistance</h1> |
| <p>RNA splint is an in-vitro method described for the ligation of 2 RNA molecules. (M.R. Stark, J.A. Pleiss, (2006)<br> | | <p>RNA splint is an in-vitro method described for the ligation of 2 RNA molecules. (M.R. Stark, J.A. Pleiss, (2006)<br> |
- | For a simple and robust screen CM split is preferred over the split of luxI<br> | + | For a simple and robust screen CM split is preferred over the split of luxI<br><br><br> |
| <img src="https://static.igem.org/mediawiki/2014/b/be/Technion-Israel-RNAwhole.png"></p> | | <img src="https://static.igem.org/mediawiki/2014/b/be/Technion-Israel-RNAwhole.png"></p> |
- | <h1>Some background about the components needed for the described system</h1> | + | <h1><br><br>Some background about the components needed for the described system</h1> |
- | <p> | + | <p style="text-align:left;"> |
| • Role of T4 Ligase in nature: to repair tRNA damage during the invasion of the bacteriophage (maybe cause of different anti codon usage in the phage) (“Thus, reprocessing could be yet another T4 device to adapt the translation apparatus to post-infection codon usage”) (Amitsur et al., 1987)(C. Kiong Ho, Li Kai Wang 2004)<br> | | • Role of T4 Ligase in nature: to repair tRNA damage during the invasion of the bacteriophage (maybe cause of different anti codon usage in the phage) (“Thus, reprocessing could be yet another T4 device to adapt the translation apparatus to post-infection codon usage”) (Amitsur et al., 1987)(C. Kiong Ho, Li Kai Wang 2004)<br> |
| • Problem: Ribosome will get stuck because of the double strand RNA<br> | | • Problem: Ribosome will get stuck because of the double strand RNA<br> |
Line 411: |
Line 413: |
| <img> | | <img> |
| </p> | | </p> |
| + | <p>For extended information follow the <a href="https://static.igem.org/mediawiki/2014/c/c5/Technion-Israel-RNA_Splint2.pdf" target="_blank">link</a></p> |
| </center> | | </center> |
| <hr> | | <hr> |
Line 475: |
Line 478: |
| <h1><br>Azobenzene aggregate Nano-Particles (NPs)</h1> | | <h1><br>Azobenzene aggregate Nano-Particles (NPs)</h1> |
| <p style="font-size:1.1em;">We established our iGEM azobenzene biological conceptions based on the Nano-word. We collaborated with Weizmann institute to test azobenzene molecules. We have seen that azobenzene can aggregate various NPs like iron oxide, gold and big particles like silica (see reference and TEM figures), and based on this behaviors we established our vision to use azobenzene as a photo-induced molecule to aggregate bacteria forming a synthetic biofilm.</p> | | <p style="font-size:1.1em;">We established our iGEM azobenzene biological conceptions based on the Nano-word. We collaborated with Weizmann institute to test azobenzene molecules. We have seen that azobenzene can aggregate various NPs like iron oxide, gold and big particles like silica (see reference and TEM figures), and based on this behaviors we established our vision to use azobenzene as a photo-induced molecule to aggregate bacteria forming a synthetic biofilm.</p> |
| + | |
| + | <p><br><p>For full azobenzene protocol follow the <a href="https://static.igem.org/mediawiki/2014/0/0e/Technion-Israel-Azobenzene.pdf" target="_blank">link</a></p> |
| + | <p><br><p>For extended information follow the <a href="https://static.igem.org/mediawiki/2014/f/fa/Technion-Israel-Simple_azo.pdf" target="_blank">link</a></p> |
| </center> | | </center> |
| <hr> | | <hr> |
Line 501: |
Line 507: |
| <h1 style="font-size:1.5em;">Introduction</h1> | | <h1 style="font-size:1.5em;">Introduction</h1> |
| <p style="font-size:1.1em; line-height:1.75em;"> | | <p style="font-size:1.1em; line-height:1.75em;"> |
- | Some substances that we want to detect cannot diffuse into the cell or they do not activate promoters. To test for these substances we want utilize the E.coli’s EnvZ/ompR two-component signaling system (Forst & Roberts, 1994) by creating chimera proteins that detect the desired substance.<br> | + | Some substances that we want to detect cannot diffuse into the cell or they do not activate promoters. To test for these substances we want utilize the modularity of E.coli’s EnvZ/ompR two-component signaling system by creating chimera proteins that detect the desired substance.<br> |
| <img src="https://static.igem.org/mediawiki/2014/7/71/Technion-Israel-hk.png"><br> | | <img src="https://static.igem.org/mediawiki/2014/7/71/Technion-Israel-hk.png"><br> |
| <b>Figure 1: How a chimaera protein would use the EnvZ/ompR two-component signalling system to trigger our system</b><br><br> | | <b>Figure 1: How a chimaera protein would use the EnvZ/ompR two-component signalling system to trigger our system</b><br><br> |
Line 508: |
Line 514: |
| <h1 style="font-size:1.5em;"><br>TaZ Construct</h1> | | <h1 style="font-size:1.5em;"><br>TaZ Construct</h1> |
| <p style="font-size:1.1em; line-height:1.75em;"><b>Completed and Biobricked</b></p> | | <p style="font-size:1.1em; line-height:1.75em;"><b>Completed and Biobricked</b></p> |
- | <p style="font-size:1.1em; line-height:1.75em;">We found the receptor, tar-envZ biobrick (Bba_C0082) which contains the coding sequence for Taz. In order to use the Taz we added the promoter Pcat (Bba_I14033), an RBS (Bba_B0034) and double terminator (Bba_B0015). Thus we created the Taz construct biobrick BBa_K1343016. Click on the link to continue reading about our TaZ experimentation.</p> | + | <p style="font-size:1.1em; line-height:1.75em;">We found the receptor, tar-envZ biobrick (Bba_C0082) which contains the coding sequence for Taz. In order to use the Taz we added the promoter Pcat (Bba_I14033), an RBS (Bba_B0034) and double terminator (Bba_B0015). Thus we created the Taz construct biobrick <a href="http://parts.igem.org/Part:BBa_K1343003" target="_blank">BBa_K1343016</a>. Click on the link to continue reading about our <a href="https://2014.igem.org/Team:Technion-Israel/Experiments#taz">TaZ experimentation</a>.</p> |
| <p>Two different E. coli strains were tested:<br> | | <p>Two different E. coli strains were tested:<br> |
| (1)BW25113 - parent strain for the Keio collection<br> | | (1)BW25113 - parent strain for the Keio collection<br> |
Line 514: |
Line 520: |
| (These strains were given to us by Lior Zelcbuch, Elad Hertz from Ron Milo’s lab at the Weizmann Institute of Science)<br><br> | | (These strains were given to us by Lior Zelcbuch, Elad Hertz from Ron Milo’s lab at the Weizmann Institute of Science)<br><br> |
| The goal was to compare the expression in the wild type and in the ΔEnvZ mutant. We expected that in the wild type the expression will be greater than in the mutant since the natural EnvZ/ompR system will cause expression of the RFP.</p> | | The goal was to compare the expression in the wild type and in the ΔEnvZ mutant. We expected that in the wild type the expression will be greater than in the mutant since the natural EnvZ/ompR system will cause expression of the RFP.</p> |
| + | |
| + | <p><br><p>For extended information follow the <a href="https://static.igem.org/mediawiki/2014/7/7d/Technion-Israel-Histidine_Kinase_-_long_for_wiki.pdf" target="_blank">link</a></p> |
| </center> | | </center> |
| <hr> | | <hr> |
Line 528: |
Line 536: |
| <center><h1 style="font-size:1.5em;">Gene Deletion</h1></center> | | <center><h1 style="font-size:1.5em;">Gene Deletion</h1></center> |
| <center><p><b>Failed to delete ackA-pta genes</b></p><center> | | <center><p><b>Failed to delete ackA-pta genes</b></p><center> |
| + | <center> |
| <p> | | <p> |
- | | + | To be able to utilize the EnvZ/OmpR two-component-signaling system for our project, we need to ensure that the natural EnvZ/OmpR system does not interfere, introducing noise to the system, giving a false signal.<br> |
| + | <b>How did we change make sure the natural EnvZ/OmpR system doesn’t disrupt our system?</b><br> |
| + | We needed to use a strain of E. coli that has an EnvZ deletion (ΔEnvZ). The Keio Collection (Baba, Ara, Hasegawa, Takai, & Okumura, 2006) contains a strain of E. coli with exactly this deletion (strain JW3367-3).<br>Great! So we are all set right?<br> |
| + | Wrong.<br> |
| + | OmpR can be phosphorylated not only by the histidine kinase EnvZ but also by an acetyl phosphate dependent mechanism. (Heyde, Laloi, & Portalier, 2000) This would introduce a low level of noise into the system. Since our detector needs to be precise to be able to detect low concentrations, even a low level of noise would be problematic.<br> |
| + | <b>What did we do about this?</b><br> |
| + | We needed a bacteria which not only had the EnvZ knockout, but also had the genes for the Phosphate acetyl transferase (pta) and Acetate kinase (ackA) enzymes which are involved in the acetyl phosphate pathway (Heyde, Laloi, & Portalier, 2000)<br> |
| + | Unfortunately we had some trouble finding a strain with the deletions we needed so we decided to make one ourselves.<br> |
| + | <b>How did we do this?</b><br> |
| + | Lior Zelcbuch and Elad Hertz from Ron Milo’s lab at the Weizmann Institute of Science suggested we take the E. coli strain JW3367-3 (ΔEnvZ) from the Keio Collection and use the Lamda Red technique to delete the genes for ackA and pta.<br> |
| + | Since the genes for ackA and pta are adjacent to each other on the E. coli chromosome, we decided to delete them in one go.<br> |
| + | With Lior Z. and Elad’s guidance and help from Edna Kler from the Technion, we attempted to delete the genes.<br> |
| + | We tried several times, once we even went all the way to the Weizmann Institute in Rehovot where Lior Z., Elad and Sagit Yahav helped us. But to no avail! We just couldn’t manage to knock out the genes! <br> |
| + | </p> |
| + | <p><br><p>For extended information follow the <a href="https://static.igem.org/mediawiki/2014/1/1e/Gene_Deletion_-_wiki.pdf" target="_blank">link</a></p> |
| + | <hr> |
| + | </center> |
| + | <p style="text-align:left;"> |
| + | 1. Baba, T., Ara, T., Hasegawa, M., Takai, Y., & Okumura, Y. (2006). Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Molecular Systems Biology, 1-11. |
| + | 2. Datsenko, K. A., & Wanner, B. L. (2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences of the United States of America, 97(12), 6640-6645. |
| + | 3. Forst, S. A., & Roberts, D. L. (1994). Signal transduction by the EnvZ-OmpR phosphotransfer system in bacteria. Research in Microbiology, 145, 363-373. |
| + | 4. Heyde, M., Laloi, P., & Portalier, R. (2000). Involvement of Carbon Source and Acetyl Phosphate in the External-pH-Dependent Expression of Porin Genes in Escherichia coli. Journal of Bacteriology, 182(1), 198-202. |
| + | 5. Kenney, L. (n.d.). Welcome to the Kenney Lab. Retrieved from University of Illinois at Chicago: http://www.uic.edu/labs/kenneyl/) |
| </p> | | </p> |
- |
| |
| | | |
| </div> | | </div> |
Line 537: |
Line 567: |
| | | |
| <div id="footer-wrapper" class="wrapper"> | | <div id="footer-wrapper" class="wrapper"> |
- | <div class="title" id="newmethod">New Method</div> | + | <div class="title" id="newmethod">New Standard</div> |
| <div id="footer" class="container"> | | <div id="footer" class="container"> |
| <header class="style1info"> | | <header class="style1info"> |
Line 889: |
Line 919: |
| </ul> | | </ul> |
| </div> | | </div> |
| + | |
| + | |
| + | </body> |
| + | |
| | | |
| </body> | | </body> |
| </html> | | </html> |