|
|
(4 intermediate revisions not shown) |
Line 23: |
Line 23: |
| </td></tr> | | </td></tr> |
| </table> | | </table> |
- | </br> | + | <br/> |
- | <table style="background-color:rgb(204,214,234);" width="90%" align="center"> | + | <table style="background-color:#ebebeb;" width="90%" align="center"> |
- | <tr style="background-color:rgb(246,246,246);"> | + | <tr style="background-color:rgb(245,245,245);"> |
- | <!--<td>
| + | <td colspan="2"> |
- | <br/>--> | + | <br/> |
| | | |
| <section style="margin: -40px"></section> | | <section style="margin: -40px"></section> |
| <section style="text-align: justify; margin: 50px"> | | <section style="text-align: justify; margin: 50px"> |
| | | |
- | <!-- Nice Biblio effect with: </table>
| + | </td> |
- | <table style="background-color:rgb(204,214,234)"> -->
| + | |
- | | + | |
- | </section>
| + | |
- | <section style="background-color:#CCD6EA; margin: 25px">
| + | |
- | <section style="text-align: justify; margin: 25px">
| + | |
- | <h3>$\hspace{0.12cm}$Bibliography</h3>
| + | |
- | <!-- Rem: Biblio written by chronology, from 1910 until 2014 -->
| + | |
- | <ul>
| + | |
- | <li>[13] A.V. Hill, (1910). <i>The possible effects of the Aggregation of the molecules of hemoglobin on its Dissociation curves</i>, J. Physiol, No.40, iv-vii. </li>
| + | |
- | <!-- Intro on Hill functions with hemoglobin-->
| + | |
- | <li>[14] T. Ogura, S. Hiraga, (1983). <i>Mini-F plasmids genes that couple Host cell division to Plasmid proliferation</i>, Proc. Natl. Acad. Sci. USA, 80, 4784-4788. </li>
| + | |
- | <!--
| + | |
- | (Abstract): Stable Maintenance plasmids, ccd region dissected into ccdB (cell division) and ccdA (inhibition), plasmid proloferation.
| + | |
- | (p4785): oriC plasmids, EcoR1, replication
| + | |
- | (p4787): Dissection of the cdd region + culture, kinetics and growing conditions.
| + | |
- | (p4788): Mutants of F plasmid
| + | |
- | -->
| + | |
- | <li>[15] M. Santillán, (2008). <i>On the use of the Hill functions in Mathematical models od Gene regulatory networks</i>, Math. Model. Nat. Phenom., Vol.3, No.2, 85-97. </li>
| + | |
- | <!--
| + | |
- | (p86): Cooperative binding sequences: The Hill coefficient is appropriately described as an interaction coefficient reflecting cooperativity.
| + | |
- | (p94): If P is an activator(/repressor), the regulatory function R([P]) comes out to be monotocally increasing(/decreasing). Transcription rate, probability of gene copy.
| + | |
- | (p95): Interestingly, the most extensively studied gene regulatory systems (cf lactose operon of E.coli) make use of cooperativity to increase the sigmoidicity of the regulatory functions.
| + | |
- | (p96): Significance of the parameters by modelling.
| + | |
- | -->
| + | |
- | <li>[16] P. Wang, R.E. Dalbey, (2010). <i>In Vitro and in Vivo approaches to studying the Bacterial signal Peptide processing</i>, Springer Protocols, A. Economou ed. Humana Press, Protein Secretion, Methods in Molecular Biology 619, 21-37. </li>
| + | |
- | <!-- Signal peptide cleavage, membranes, cell biology, in vitro assays. -->
| + | |
- | <li>[17] L. Gelens, L. Hill, A. Vandervelde, J. Danckaert, R. Loris, (2013). <i>A general model for Toxin-antitoxin module dynamics can explain Persister cell formation in E.coli</i>, PLOS Computational Biology, Vol.9, Iss.8, e1003190. </li>
| + | |
- | <!--
| + | |
- | (p1): Among the elements involved in bacterial stress response are the type TT toxine-antitoxin modules. CcdB and ParE family mambers inhibit gyrase, although via different molecular mechanisms.
| + | |
- | (p2): Persisters are subpopulations of bacteria wich are tolerant to biological stresses such antibiotics because they are in a dormant, non-dividing state.
| + | |
- | (p11): Fig @ simulations: Large toxin spikes -> route to persister cell formation through growth rate suppression.
| + | |
- | (p14): Kinds of TA, TAT Decay complexes.
| + | |
- | -->
| + | |
- | <li>[18] N. Goeders, L. Van Melderen, (2014). <i>Toxin-antitoxin systems as Multilevel interaction systems</i>, Toxins, 6, 304-324, ISSN 2072-6651. </li>
| + | |
- | <!--
| + | |
- | (p305): Fig: ccdA-ccdB
| + | |
- | (p306): Evolution of TA systems + bioinfo approaches.
| + | |
- | (p313): Effect on DNA-gyrase.
| + | |
- | -->
| + | |
- | <li>[19] D.A. Malyshev, K. Dhami, T. Lavergne, T. Chen, N. Dai, J.M. Foster, I.R. Corrêa Jr & F.E. Romesberg, (2014).
| + | |
- | <i>A semi-synthetic organism with an expanded genetic alphabet</i>, Research Letter, Nature 13314, 1-17. </li>
| + | |
- | <!-- E.Coli, experimental results using IPTG and KPI, iGEM 2013 team -->
| + | |
- | <li>[20] A. Provata, C. Nicolis & G. Nicolis, (2014). <i>DNA viewed as an out-of-equilibrium structure</i>, Phys. Rev. E 89, 052105. </li>
| + | |
- | <!-- Stochasticity and Markov processes, mammal chromosomes, MC rejection method algorithm, short-ranged intermolecular interactions. -->
| + | |
- | </ul>
| + | |
- | <br>
| + | |
- | </section></section>
| + | |
- | | + | |
- | <section style="margin: -5px"></section>
| + | |
- | </tr>
| + | |
- | | + | |
- | | + | |
| <!-- Previous and Next pages --> | | <!-- Previous and Next pages --> |
| <tr style="background-color:rgb(204,214,234);"><td> | | <tr style="background-color:rgb(204,214,234);"><td> |
Line 90: |
Line 38: |
| <section style="text-align: right"> | | <section style="text-align: right"> |
| <a href="https://2014.igem.org/Team:ULB-Brussels/Modelling/Population-Dynamics"><b> Population Dynamics > </b></a> | | <a href="https://2014.igem.org/Team:ULB-Brussels/Modelling/Population-Dynamics"><b> Population Dynamics > </b></a> |
- | </section> | + | </section></tr> |
- | </tr> | + | |
| | | |
| <tr><td><br/><br/></td></tr> | | <tr><td><br/><br/></td></tr> |
- | </table></th></tr>
| + | </th></tr> |
| | | |
| </div> | | </div> |
$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
\newcommand{\MyColi}{{\small Mighty\hspace{0.12cm}Coli}}
\newcommand{\Stabi}{\small Stabi}$
$\newcommand{\EColi}{\small E.coli}
\newcommand{\SCere}{\small S.cerevisae}\\[0cm]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
\newcommand{\PI}{\small PI}$
$\newcommand{\Igo}{\Large\mathcal{I}}
\newcommand{\Tgo}{\Large\mathcal{T}}
\newcommand{\Ogo}{\Large\mathcal{O}}
~$