Team:Groningen/Template/MODULE/project/MBD/bandage
From 2014.igem.org
(Difference between revisions)
Ottoschepers (Talk | contribs) |
Ottoschepers (Talk | contribs) |
||
(5 intermediate revisions not shown) | |||
Line 21: | Line 21: | ||
<!-- PARAGRAPH SNIPPET START--> | <!-- PARAGRAPH SNIPPET START--> | ||
<div class="text"> | <div class="text"> | ||
- | Our main goal for this project is to design a bandage prototype for burn wounds. Burn wounds are mainly infected with | + | Our main goal for this project is to design a bandage prototype for burn wounds. Burn wounds are mainly infected with <i>S. aureus</i> and <i>P. aeruginosa</i>. The quorum molecules produced by these two pathogens should diffuse through the bandage and activate the production of Nisin, Aiia and DspB proteins. These three proteins should diffuse out of the bandage and act on the pathogens. |
Line 38: | Line 38: | ||
<!-- FIGURE SNIPPET START --> | <!-- FIGURE SNIPPET START --> | ||
</html>{{:Team:Groningen/Template/MODULE/newfigure|Figure 4|b/b5/Overviewmodel.modelling.png| | </html>{{:Team:Groningen/Template/MODULE/newfigure|Figure 4|b/b5/Overviewmodel.modelling.png| | ||
- | + | Scheme for modeling the bandage | |
}}<html> | }}<html> | ||
<!-- FIGURE SNIPPET END--> | <!-- FIGURE SNIPPET END--> | ||
Line 45: | Line 45: | ||
<div class="text"> | <div class="text"> | ||
- | To evaluate different bandage designs, we develop a multi-scale dynamic model of the bandage. The bandage is discretized into lattices where each lattice contains differential equations describing the growth of bacteria, production of nisin, production of Aiia, production of DspB and the detection of quorum molecules. Apart from the differential equations for the productions of the three IPM molecules we also consider the diffusion parameters. This makes the model more dynamic to study characteristics of our bandage | + | To evaluate different bandage designs, we develop a multi-scale dynamic model of the bandage. The bandage is discretized into lattices where each lattice contains differential equations describing the growth of bacteria, production of nisin, production of Aiia, production of DspB and the detection of quorum molecules. Apart from the differential equations for the productions of the three IPM molecules we also consider the diffusion parameters. This makes the model more dynamic to study characteristics of our bandage. |
+ | </div> | ||
+ | <div class="hspacer"> </div> | ||
+ | <!-- PARAGRAPH SNIPPET END--> | ||
<!-- PARAGRAPH SNIPPET START--> | <!-- PARAGRAPH SNIPPET START--> | ||
<div class="text"> | <div class="text"> | ||
- | Each state variable in each lattice is initialized according to the different bandage designs. Each lattice contains few bacteria which uses glucose as nutrient source and grows. Actively growing bacteria produce Nisin, Aiia and DspB only in response to the quorum molecules produced by both Staphylococcus aureus and Pseudomonas aeruginosa. In presence of quorum molecules in the lattice, the bacteria starts producing Nisin, Aiia and DspB. Nisin, Aiia and DspB produced in a lattice diffuses to nearby lattices until equilibrium is reached | + | Each state variable in each lattice is initialized according to the different bandage designs. Each lattice contains few bacteria which uses glucose as nutrient source and grows. Actively growing bacteria produce Nisin, Aiia and DspB only in response to the quorum molecules produced by both <i>Staphylococcus aureus</i> and <i>Pseudomonas aeruginosa</i>. In presence of quorum molecules in the lattice, the bacteria starts producing Nisin, Aiia and DspB. Nisin, Aiia and DspB produced in a lattice diffuses to nearby lattices until equilibrium is reached. |
</div> | </div> | ||
<div class="hspacer"> </div> | <div class="hspacer"> </div> | ||
Line 58: | Line 61: | ||
<!-- PARAGRAPH SNIPPET START--> | <!-- PARAGRAPH SNIPPET START--> | ||
<div class="text"> | <div class="text"> | ||
- | Studying the diffusion rates of Nisin, Aiia and DspB is important to estimate the time taken to reach the threshold concentrations. The threshold concentration is the minimum concentration of the proteins that is required to breakdown biofilm, kill | + | Studying the diffusion rates of Nisin, Aiia and DspB is important to estimate the time taken to reach the threshold concentrations. The threshold concentration is the minimum concentration of the proteins that is required to breakdown biofilm, kill <i>S. aureus</i> and quorum quench <i>P. aeruginosa</i> population. The diffusion constants for these three proteins were not available directly. |
+ | |||
+ | <a href="https://static.igem.org/mediawiki/2014/8/83/Rate_equations_for_diffusion_model.pdf">For more info on the rate equations look here.</a> | ||
</div> | </div> | ||
<div class="hspacer"> </div> | <div class="hspacer"> </div> | ||
Line 64: | Line 69: | ||
- | |||
- | |||
- | |||
Latest revision as of 01:47, 18 October 2014
Model-based bandage design
Our main goal for this project is to design a bandage prototype for burn wounds. Burn wounds are mainly infected with S. aureus and P. aeruginosa. The quorum molecules produced by these two pathogens should diffuse through the bandage and activate the production of Nisin, Aiia and DspB proteins. These three proteins should diffuse out of the bandage and act on the pathogens.
To evaluate different bandage designs, we develop a multi-scale dynamic model of the bandage. The bandage is discretized into lattices where each lattice contains differential equations describing the growth of bacteria, production of nisin, production of Aiia, production of DspB and the detection of quorum molecules. Apart from the differential equations for the productions of the three IPM molecules we also consider the diffusion parameters. This makes the model more dynamic to study characteristics of our bandage.
Each state variable in each lattice is initialized according to the different bandage designs. Each lattice contains few bacteria which uses glucose as nutrient source and grows. Actively growing bacteria produce Nisin, Aiia and DspB only in response to the quorum molecules produced by both Staphylococcus aureus and Pseudomonas aeruginosa. In presence of quorum molecules in the lattice, the bacteria starts producing Nisin, Aiia and DspB. Nisin, Aiia and DspB produced in a lattice diffuses to nearby lattices until equilibrium is reached.
Studying the diffusion rates of Nisin, Aiia and DspB is important to estimate the time taken to reach the threshold concentrations. The threshold concentration is the minimum concentration of the proteins that is required to breakdown biofilm, kill S. aureus and quorum quench P. aeruginosa population. The diffusion constants for these three proteins were not available directly.
For more info on the rate equations look here.