Team:Tokyo Tech/Experiment/C4HSL-dependent 3OC12HSL production

From 2014.igem.org

(Difference between revisions)
 
(36 intermediate revisions not shown)
Line 26: Line 26:
        <li><a href="https://2014.igem.org/Team:Tokyo_Tech/Experiment/C4HSL-dependent_3OC12HSL_production" style="width:400px; margin-left:-135px;">C4HSL-dependent 3OC12HSL production</a></li>
        <li><a href="https://2014.igem.org/Team:Tokyo_Tech/Experiment/C4HSL-dependent_3OC12HSL_production" style="width:400px; margin-left:-135px;">C4HSL-dependent 3OC12HSL production</a></li>
        <li><a href="https://2014.igem.org/Team:Tokyo_Tech/Experiment/3OC12HSL-dependent_C4HSL_production" style="width:400px; margin-left:-135px;">3OC12HSL-dependent C4HSL production</a></li>
        <li><a href="https://2014.igem.org/Team:Tokyo_Tech/Experiment/3OC12HSL-dependent_C4HSL_production" style="width:400px; margin-left:-135px;">3OC12HSL-dependent C4HSL production</a></li>
-
        <li><a href="https://2014.igem.org/Team:Tokyo_Tech/Experiment/Symbiosis_confirmation_by_co-culture" style="width:400px; margin-left:-135px;">Symbiosis confirmation by co-culture </a></li>
+
        <li><a href="https://2014.igem.org/Team:Tokyo_Tech/Experiment/Symbiosis_confirmation_by_co-culture" style="width:400px; margin-left:-135px;">Mutualism Confirmation ~Co-culture Assay~</a></li>
         
         
  </ul>
  </ul>
Line 72: Line 72:
               <p align="center"><span class="title-small">Contents</span></p>
               <p align="center"><span class="title-small">Contents</span></p>
                 <p align="left" class="info-24"><a href="#1">1. Introduction </a></p>    
                 <p align="left" class="info-24"><a href="#1">1. Introduction </a></p>    
-
            <p align="left" class="info-24"><a href="#2">2. Summary of the experiments </a></p>
+
            <p align="left" class="info-24"><a href="#2">2. Summary of the Experiments </a></p>
                                   <p align="left" class="info-18"><a href="#2.1">2.1 C4HSL-dependent CmR expression</a></p>
                                   <p align="left" class="info-18"><a href="#2.1">2.1 C4HSL-dependent CmR expression</a></p>
                                   <p align="left" class="info-18"><a href="#2.2">2.2 C4HSL-dependent 3OC12HSL production </a></p>
                                   <p align="left" class="info-18"><a href="#2.2">2.2 C4HSL-dependent 3OC12HSL production </a></p>
Line 78: Line 78:
                       <p align="left" class="info-18"><a href="#3.1">3.1. C4HSL-Dependent  CmR Expression Assay</a></p>
                       <p align="left" class="info-18"><a href="#3.1">3.1. C4HSL-Dependent  CmR Expression Assay</a></p>
                       <p align="left" class="info-18"><a href="#3.2">3.2. C4HSL-Dependent 3OC12HSL  Production Assay</a></p>
                       <p align="left" class="info-18"><a href="#3.2">3.2. C4HSL-Dependent 3OC12HSL  Production Assay</a></p>
-
                       <p align="left" class="info-24"><a href="#4">4. Materials and methods</a></p>
+
                       <p align="left" class="info-24"><a href="#4">4. Materials and Methods</a></p>
  <p align="left" class="info-18"><a href="#4.1">4.1. Construction</a></p>
  <p align="left" class="info-18"><a href="#4.1">4.1. Construction</a></p>
  <p align="left" class="info-18"><a href="#4.2">4.2. Assay Protocol </a></p>
  <p align="left" class="info-18"><a href="#4.2">4.2. Assay Protocol </a></p>
Line 96: Line 96:
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td colspan="2"><p class="info-18">We designed signal-dependent signal production in our system by using signaling molecules and antibioticss resistance gene. In our bank story, we used signaling molecules C4HSL as money.</p></td>  
+
                   <td colspan="2"><p class="info-18">We designed signal-dependent signal production in our system by using signaling molecules and antibiotics resistance gene. In our bank story, we used signaling molecule C4HSL as money.</p></td>  
                 </tr>
                 </tr>
                   <tr>  
                   <tr>  
-
                   <td colspan="2"><p class="info-18">For construction of the  C4HSL-dependent chloramphenicol resistance (CmR) and 3OC12HSL production  module, we constructed a new part Prhl(RL)-CmR-LasI(<a href="http://parts.igem.org/Part:BBa_K1529302">BBa_K1529302</a>). Prhl(RL)-CmR-LasI cell is an engineered <i>E. coli</i> that contains  a C4HSL-dependent LasI generator and a constitutive RhlR generator. As a constitutive  RhlR generator, we used Ptet-RhlR. In our bank story, this part imitates the functions of Company. (Fig. 3-3-1-1.) We confirmed that C4HSL-dependent growth by measuring optical density, and C4HSL-dependent 3OC12HSL production by using reporter cell. </p>                  </td>
+
                   <td colspan="2"><p class="info-18">For construction of the  C4HSL-dependent chloramphenicol resistance gene product(CmR) and 3OC12HSL production  module, we constructed a new part Prhl(RL)-CmR-LasI(<a href="http://parts.igem.org/Part:BBa_K1529302">BBa_K1529302</a>). Prhl(RL)-CmR-LasI cell is an engineered <i>E. coli</i> that contains  a C4HSL-dependent LasI generator and a constitutive RhlR generator. As a constitutive  RhlR generator, we used Ptet-RhlR. In our bank story, this part imitates the functions of Company. (Fig. 3-3-1-1) We confirmed the C4HSL-dependent growth by measuring optical density, and C4HSL-dependent 3OC12HSL production by using reporter cell. </p>                  </td>
                 </tr>
                 </tr>
                  
                  
Line 109: Line 109:
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td colspan="2"><div align="center">Fig. 3-3-1-1. Genetic Circuit of Company <i>E. coli</i></div></td>
+
                   <td colspan="2"><div align="center"><strong>Fig. 3-3-1-1.</strong> Genetic Circuit of Company <i>E. coli</i></div></td>
                 </tr>
                 </tr>
                  
                  
Line 135: Line 135:
                 </tr>
                 </tr>
                <tr>
                <tr>
-
                 <td width="445"><div align="center"><a href="https://2014.igem.org/File:Tokyo_Tech_3-3-1-2.png"><img src="https://static.igem.org/mediawiki/2014/thumb/9/9a/Tokyo_Tech_3-3-1-2.png/742px-Tokyo_Tech_3-3-1-2.png" width="500" /></a></div></td>
+
                 <td width="445"><div align="center"><a href="https://2014.igem.org/File:Tokyo_Tech_3-3-1-2.png"><img src="https://static.igem.org/mediawiki/2014/9/9a/Tokyo_Tech_3-3-1-2.png" width="500" /></a></div></td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td><div align="center">Fig. 3-3-2-1. Flow chart of C4HSL-depemdent CmR expression assay</div></td>
+
                   <td><div align="center"><strong>Fig. 3-3-2-1.</strong> Flow chart of C4HSL-dependent CmR expression assay</div></td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
Line 144: Line 144:
                 </tr>  
                 </tr>  
                 <tr>
                 <tr>
-
                   <td colspan="2"><p class="info-18"> We confirmed the function of C4HSL-dependent CmR expression by measuring optical density of the cell cultures containing chloramphenicol. </a></td>
+
                   <td colspan="2"><p class="info-18"> We confirmed the function of C4HSL-dependent CmR expression by measuring optical density of the cultures containing chloramphenicol(Fig. 3-3-2-1). </a></td>
                 </tr>
                 </tr>
                   <tr>
                   <tr>
-
                   <td colspan="2"><p class="info-18">In this experiment we prepared three plasmids, A, B and C. (See Fig. 3-4-2-1.) Right after the C4HSL induction, we added chloramphenicol into the medium containing Company cell. We measured optical density for about 8 h to estimate the concentration of the cell.</a>
+
                   <td colspan="2"><p class="info-18">In this experiment we prepared three plasmids, A, B and C. (See Fig. 3-3-2-2) Right after the C4HSL induction, we added chloramphenicol into the medium containing Company cell. We measured the optical density for about eight hours to estimate the concentration of the cell.</a>
</p>                  </td>
</p>                  </td>
                 </tr>
                 </tr>
Line 154: Line 154:
                 </tr>
                 </tr>
                   <tr>
                   <tr>
-
                  <td colspan="2"><div align="center"><a href="https://2014.igem.org/File:Tokyo_Tech_3-3-2-2"><img src="" width="500" /></a></div></td>
+
      <tr><td colspan="2"><div align="center"><a href="https://2014.igem.org/File:Tokyo_Tech_3-3-2-2-1.png"><img src="https://static.igem.org/mediawiki/2014/9/9d/Tokyo_Tech_3-3-2-2-1.png" width="400" /></a></div></td>
 +
                </tr>
 +
<td><div align="center"><strong>Fig. 3-3-2-2.</strong> Plasmids for the experiment of C4HSL-dependent CmR expression</div></td>
 +
                </tr>
                 </tr>
                 </tr>
                   <tr>
                   <tr>
-
                  <td><div align="center">Fig. 3-3-2-2. Plasmids for the experiment of C4HSL-dependent CmR expression図がない</div></td>
+
                 
-
                </tr>
+
                 <tr>
                 <tr>
                   <td colspan="2">&nbsp;</td>
                   <td colspan="2">&nbsp;</td>
Line 169: Line 171:
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                  <td width="445"><div align="center"><a href="https://2014.igem.org/File:Tokyo_Tech_3-3-1-3.png"><img src="https://static.igem.org/mediawiki/2014/thumb/4/45/Tokyo_Tech_3-3-1-3.png/800px-Tokyo_Tech_3-3-1-3.png" width="500" /></a></div></td>
+
  <td colspan="2"><p class="info-18">We performed a reporter assay by using reporter cells to characterize the function of C4HSL-dependent C4HSL production. Prhl(RL)-CmR-LasI cell containing constitutive RhlR generator expresses LasI and produces 3OC12HSL in the presence of C4HSL. Since 3OC12HSL is excreted to the culture, the supernatant of the sender cell contains 3OC12HSL when the part works as expected. </p></td>
-
                </tr>
+
-
                  <tr>
+
-
                  <td><div align="center">Fig. 3-3-2-3. Flow chart of C4HSL-dependent 3OC12HSL <br />
+
-
                  production Assay </div></td>
+
-
                </tr> 
+
-
                <tr>
+
-
                  <td colspan="2"><p class="info-18">We performed a reporter assay by using reporter cells to characterize the function of C4HSL-dependent C4HSL production. Prhl(RL)-CmR-LasI cell containing constitutive RhlR generator expresses LasI and produces 3OC12HSL in the presence of C4HSL. Since 3OC12HSL is excreted to the culture, the supernatant of the sender cell contains 3OC12HSL when the part works as expected. </p></td>
+
                 </tr>
                 </tr>
                   <tr>
                   <tr>
-
                   <td colspan="2"><p class="info-18"> Reporter cells are incubated in the supernatant of the culture of sender cells. When there are 3OC12HSL in the supernatant, reporter cell expresses GFP. We checked the fluorescence of reporter cells to confirm of the expression of 3OC12HSL.The expression of the reporter cells were measured by Flow Cytometer.</p></td>
+
                   <td colspan="2"><p class="info-18"> Reporter cells are incubated in the supernatant of the culture of sender cells. When there are 3OC12HSL in the supernatant, reporter cell expresses GFP. We checked the fluorescence of reporter cells to confirm the expression of 3OC12HSL. The expression of the reporter cells were measured by flow cytometer.(See Fig.3-3-2-3)</p></td>
                 </tr><tr>
                 </tr><tr>
                   <td colspan="2">&nbsp;</td>
                   <td colspan="2">&nbsp;</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td colspan="2"><p class="info-18">We prepared the following conditions for the induction of reporter cells. (Plux-CmR cell was used as the negative control.)</p></td>
+
                  <td width="445"><div align="center"><a href="https://2014.igem.org/File:Tokyo_Tech_3-3-1-3.png"><img src="https://static.igem.org/mediawiki/2014/4/45/Tokyo_Tech_3-3-1-3.png" width="500" /></a></div></td>
 +
                </tr>
 +
                  <tr>
 +
                  <td><div align="center"><strong>Fig. 3-3-2-3. </strong>Flow chart of C4HSL-dependent 3OC12HSL production Assay  </div></td>
 +
                </tr> 
 +
 
 +
                <tr><td colspan="2"><div align="center"><a href="https://2014.igem.org/File:Tokyo_Tech_3-3-2-2.png"><img src="https://static.igem.org/mediawiki/2014/2/2f/Tokyo_Tech_3-3-2-2.png" width="700" /></a></div></td>
 +
                </tr>
 +
<td><div align="center"><strong>Fig. 3-3-2-4.</strong>Plasmids for the experiment of C4HSL-dependent 3OC12HSL production</div></td>
 +
                </tr>
 +
                 
 +
                   <td colspan="2"><p class="info-18">We prepared the following conditions for the induction of reporter cells. (Plux-CmR cell was used as the negative control. See Fig. 3-3-2-4)</p></td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
Line 199: Line 205:
                 </tr>
                 </tr>
                   <tr>
                   <tr>
-
                   <td colspan="2"><p class="info-18">(5) 5 microM of artificial C4HSL in LB medium </p></td>
+
                   <td colspan="2"><p class="info-18">(5) 5 microM of synthetic C4HSL in LB medium </p></td>
                 </tr>
                 </tr>
                   <tr>
                   <tr>
Line 241: Line 247:
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td colspan="2"><p class="info-18">We tested two type of culture condition which contains different concentration of chloramphenicol(Cm). (0 and 100 microg / mL)</p></td>
+
                   <td colspan="2"><p class="info-18">We tested two types of culture condition which contains different concentration of chloramphenicol(Cm). (0 and 100 microg / mL)</p></td>
                   </tr>
                   </tr>
                   <tr>
                   <tr>
-
                   <td colspan="2"><p class="info-18">Fig.3-3-3-1. Fig.3-3-3-2. shows the condition in the absence and presence of chloramphenicol, respectively. </p></td>
+
                   <td colspan="2"><p class="info-18">Fig.3-3-3-1, Fig.3-3-3-2 shows the condition in the absence and presence of chloramphenicol, respectively. </p></td>
                   </tr>
                   </tr>
                   <tr>
                   <tr>
Line 257: Line 263:
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td colspan="2"><div align="center">Fig. 3-3-3-1. C4HSL-Dependent Company Growth in no Cm</div></td>
+
                   <td colspan="2"><div align="center"><strong>Fig. 3-3-3-1.</strong> C4HSL-Dependent Company growth with no Cm addition</div></td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
Line 266: Line 272:
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td colspan="2"><div align="center">Fig. 3-3-3-2. C4HSL-Dependent Company Growth in 100  microg/mL Cm</div></td>
+
                   <td colspan="2"><div align="center"><strong>Fig. 3-3-3-2.</strong> C4HSL-Dependent Company Growth in 100  microg/mL Cm</div></td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
Line 278: Line 284:
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td colspan="2"><h1>3-2. C4HSL-dependent 3OC12HSL production Assay</h1></td>
+
                   <td colspan="2"><h1>3-2. C4HSL-dependent 3OC12HSL Production Assay</h1></td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td colspan="2"><p class="info-18">Fig. 3-3-3-3. shows the fluorescence intensities generated by reporter cells. When the reporter cell E was incubated in the condition (1) (the culture of the induced Company cell), the fluorescence intensity of the reporter cell increased. Comparing the results of condition (1) and (2) reporter cell in the supernatant of (1) had 29-fold higher fluorescence intensity. </p></td>
+
                   <td colspan="2"><p class="info-18">Fig. 3-3-3-3 shows the fluorescence intensities generated by the reporter cells. When the reporter cell E was incubated in the condition (1) (the culture of the induced Company cell), the fluorescence intensity of the reporter cell increased. Comparing the results of condition (1) and (2) reporter cell in the supernatant of (1) had 29-fold higher fluorescence intensity. </p></td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
Line 296: Line 302:
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td colspan="2"><div align="center"><a href="#"><img src="" width="500" /></a></div></td>
+
                   <td colspan="2"><div align="center"><a href="https://2014.igem.org/File:Customer excretes 3OC12HSL when C4HSL exists.png"><img src="https://static.igem.org/mediawiki/2014/0/07/Customer_excretes_3OC12HSL_when_C4HSL_exists.png" width="500" /></a></div></td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td colspan="2"><div align="center">Fig. 3-3-3-3. Customer excretes 3OC12HSL when C4HSL exists</div></td>
+
                   <td colspan="2"><div align="center"><strong>Fig. 3-3-3-3.</strong> Company excretes 3OC12HSL when C4HSL exists</div></td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
Line 339: Line 345:
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td colspan="2" class="info-18"><div align="left">A. Ptet-GFP-Ptet-RhlR (psB6A1),  Prhl(RL)-CmR-LasI(pSB3K3)</div></td>
+
                   <td colspan="2" class="info-18"><div align="left">A. Ptet-GFP-Ptet-RhlR (pSB6A1),  Prhl(RL)-CmR-LasI(pSB3K3)</div></td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
Line 348: Line 354:
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td colspan="2"><div align="center">Fig. 3-3-4-1.</div></td>
+
                   <td colspan="2"><div align="center"><strong>Fig. 3-3-4-1.</strong></div></td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
Line 354: Line 360:
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td colspan="2" class="info-18">B. Ptet-GFP-Ptet-RhlR (psB6A1), PlacIq-CmR (pSB3K3)…Positive control</td>
+
                   <td colspan="2" class="info-18">B. Ptet-GFP-Ptet-RhlR (pSB6A1), PlacIq-CmR (pSB3K3)…Positive control</td>
-
                 </tr>
+
                 </tr
                 <tr>
                 <tr>
                   <td colspan="2">&nbsp;</td>
                   <td colspan="2">&nbsp;</td>
Line 363: Line 369:
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td colspan="2"><div align="center">Fig. 3-3-4-2.</div></td>
+
                   <td colspan="2"><div align="center"><strong>Fig. 3-3-4-2.</strong></div></td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
Line 378: Line 384:
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td colspan="2"><div align="center">Fig. 3-3-4-3.</div></td>
+
                   <td colspan="2"><div align="center"><strong>Fig. 3-3-4-3.</strong></div></td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
Line 402: Line 408:
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td colspan="2"><div align="center">Fig. 3-3-4-4.</div></td>
+
                   <td colspan="2"><div align="center"><strong>Fig. 3-3-4-4.</strong></div></td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
Line 417: Line 423:
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td colspan="2"><div align="center">Fig. 3-3-4-5.</div></td>
+
                   <td colspan="2"><div align="center"><strong>Fig. 3-3-4-5.</strong></div></td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
Line 438: Line 444:
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td colspan="2"><div align="center">Fig. 3-3-4-6図が違う.</div></td>
+
                   <td colspan="2"><div align="center"><strong>Fig. 3-3-4-6.</strong></div></td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
Line 453: Line 459:
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td colspan="2"><div align="center">Fig. 3-3-4-7.</div></td>
+
                   <td colspan="2"><div align="center"><strong>Fig. 3-3-4-7.</strong></div></td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
Line 468: Line 474:
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td colspan="2"><div align="center">Fig. 3-3-4-8.</div></td>
+
                   <td colspan="2"><div align="center"><strong>Fig. 3-3-4-8.</strong></div></td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
Line 481: Line 487:
                  
                  
                 <tr>
                 <tr>
-
                   <td colspan="2" class="info-18">1. Grow the colony of sender cell in LB containing antibiotic  O/N at 37°C.</td>
+
                   <td colspan="2" class="info-18">1. Prepare overnight cultures for the sender cells in 3 mL LB medium, containing ampicillin (50 microg / mL) and kanamycin (30 microg / mL) at 37°C for 12h.</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
Line 491: Line 497:
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td colspan="2" class="info-18">          1) 3 mL  of LB containing Amp and Kan + 30 microL C4HSL (final concentrarion is 5 microM)</td>
+
                   <td colspan="2" class="info-18">          1) 3 mL  of LB containing Amp and Kan + 30 microL C4HSL (final concentration is 5 microM)</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
Line 499: Line 505:
                 <tr>
                 <tr>
                   <td colspan="2" class="info-18">          3) 3 mL  of LB containing Amp, Kan and Cm (final concentration is 100 microg/mL) <br />
                   <td colspan="2" class="info-18">          3) 3 mL  of LB containing Amp, Kan and Cm (final concentration is 100 microg/mL) <br />
-
                                                       + 30  microL C4HSL (final concentrarion is 500 microM)</td>
+
                                                       + 30  microL C4HSL (final concentration is 500 microM)</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
Line 508: Line 514:
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td colspan="2" class="info-18">5. Measure optical density every hour. (If optical  density is over 1.0, dilute the cell medium to 1/10.)</td>
+
                   <td colspan="2" class="info-18">5. Measure optical density every hour. (If the optical  density is over 1.0, dilute the cell medium to 1/10.)</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
Line 521: Line 527:
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td colspan="2" class="info-18">1. Grow the colony of sender cell in LB containing antibiotic O/N at 37°C.</td>
+
                   <td colspan="2" class="info-18">1. Prepare overnight cultures for the sender cells in 3 mL LB medium, containing ampicillin (50 microg / mL) and kanamycin (30 microg / mL) at 37°C for 12h. </td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td colspan="2" class="info-18">2. Make a 1:100 dilution in 3 mL of fresh LB  containing antibiotic and grow the cells at 37°C until the observed OD590  reaches 0.5.If the OD becomes over 0.5, dilute to o.5 with LB medium.</td>
+
                   <td colspan="2" class="info-18">2. Make a 1:100 dilution in 3 mL of fresh LB  containing antibiotic and grow the cells at 37°C until the observed OD590  reaches 0.5.</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
Line 530: Line 536:
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td colspan="2" class="info-18">          a) Add 15  microL of 10 microM C4HSL to 3 mL LB containing Amp and Kan</td>
+
                   <td colspan="2" class="info-18">          a) Add 15  microL of 10 mM C4HSL to 3 mL LB containing Amp and Kan (final concentration is 50 microM)</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
Line 539: Line 545:
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td colspan="2" class="info-18">5. Measure optical density  every hour. (If optical density is over 1.0, dilute the cell medium to 1/10.)</td>
+
                   <td colspan="2" class="info-18">5. Measure the optical density  every hour. (If the optical density is over 1.0, dilute the cell medium to 1/10.)</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td colspan="2" class="info-18">6. Centrifuge sample at 9000x g, 4°C for 1minute.Filter sterilize supernatant. (Pore size is 0.22 microm.)</td>
+
                   <td colspan="2" class="info-18">6. Centrifuge the sample at 9000x g, 4°C for 1 min. Filter sterilize the supernatant. (Pore size is 0.22 microm.)</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
Line 554: Line 560:
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td colspan="2" class="info-18">1. Grow the colony  of  Reporter cell (E~G) in LB containing antibiotic(Amp and Kan) over night at 37°C.</td>
+
                   <td colspan="2" class="info-18">1. Prepare overnight cultures for the Reporter cell (E~G) in 3 mL LB medium, containing ampicillin (50 microg / mL) and kanamycin (30 microg / mL) at 37°C for 12h.</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td colspan="2" class="info-18">2. Make a 1:100 dilution in 3 mL of fresh LB+ antibiotic and grow the cells at 37°C until you reach an 0.5 in OD590 (fresh culture).</td>
+
                   <td colspan="2" class="info-18">2. Make a 1:100 dilution in 3 mL of fresh LB + antibiotic and grow the cells at 37°C until you reach an 0.5 in OD590 (fresh culture).</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
Line 563: Line 569:
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td colspan="2" class="info-18">          1)2.7 mL filtrate of Aa +300 microL LB </td>
+
                   <td colspan="2" class="info-18">          1) 2.7 mL filtrate of Aa +300 microL LB </td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td colspan="2" class="info-18">          2)2.7 mL filtrate of Ab +300 microL LB</td>
+
                   <td colspan="2" class="info-18">          2) 2.7 mL filtrate of Ab +300 microL LB</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
Line 575: Line 581:
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td colspan="2" class="info-18">          5)3 mL LB + 5 microM C12HSL 3 microL (final concentration is 5 nM)</td>
+
                   <td colspan="2" class="info-18">          5) 3 mL LB + 5 microM C12HSL 3 microL (Final concentration is 5 nM)</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td colspan="2" class="info-18">          6)3 mL LB + DMSO 3 microL </td>
+
                   <td colspan="2" class="info-18">          6) 3 mL LB + DMSO 3 microL </td>
                 </tr>
                 </tr>
                  
                  
                 <tr>
                 <tr>
-
                   <td colspan="2" class="info-18">4. Grow  the samples of Reporter cell in incubator at 37°C for 4 hours.</td>
+
                   <td colspan="2" class="info-18">4. Grow  the samples of Reporter cell in incubator at 37°C for 4 h.</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td colspan="2" class="info-18">5. Start preparing the flow cytometer 1 h before the end of incubation.</td>
+
                   <td colspan="2" class="info-18">5. Start preparing the flow cytometer 1 h before the end of incubation.</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td colspan="2" class="info-18">6. After incubation, take the sample, and centrifuge at 9000x g, 1 min, 4°C.</td>
+
                   <td colspan="2" class="info-18">6. After the incubation, take the sample, and centrifuge at 9000x g, 1 min., 4°C.</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td colspan="2" class="info-18">7. Remove the supernatant by using P1000 pipette.</td>
+
                   <td colspan="2" class="info-18">7. Remove the supernatant by using P1000 pipette.</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td colspan="2" class="info-18">8. Add 1 mL of filtered PBS (phosphate-buffered saline) and suspend. (The ideal of OD is  0.3.)</td>
+
                   <td colspan="2" class="info-18">8. Add 1 mL of filtered PBS (phosphate-buffered saline) and suspend. (The ideal of OD is  0.3.)</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>

Latest revision as of 03:36, 18 October 2014

Tokyo_Tech

Experiment

C4HSL-dependent 3OC12HSL production

 

Contents

1. Introduction

2. Summary of the Experiments

2.1 C4HSL-dependent CmR expression

2.2 C4HSL-dependent 3OC12HSL production

3. Results

3.1. C4HSL-Dependent CmR Expression Assay

3.2. C4HSL-Dependent 3OC12HSL Production Assay

4. Materials and Methods

4.1. Construction

4.2. Assay Protocol

4.2.1. C4HSL-Dependent CmR Expression Assay

4.2.2. C4HSL-Dependent 3OC12HSL Production Assay

5. Reference

 
 
 

1. Introduction

We designed signal-dependent signal production in our system by using signaling molecules and antibiotics resistance gene. In our bank story, we used signaling molecule C4HSL as money.

For construction of the C4HSL-dependent chloramphenicol resistance gene product(CmR) and 3OC12HSL production module, we constructed a new part Prhl(RL)-CmR-LasI(BBa_K1529302). Prhl(RL)-CmR-LasI cell is an engineered E. coli that contains a C4HSL-dependent LasI generator and a constitutive RhlR generator. As a constitutive RhlR generator, we used Ptet-RhlR. In our bank story, this part imitates the functions of Company. (Fig. 3-3-1-1) We confirmed the C4HSL-dependent growth by measuring optical density, and C4HSL-dependent 3OC12HSL production by using reporter cell.

 
Fig. 3-3-1-1. Genetic Circuit of Company E. coli
 
 
 
 

2. Summary of the experiments

2-1. C4HSL-dependent CmR expression

 
Fig. 3-3-2-1. Flow chart of C4HSL-dependent CmR expression assay
 

We confirmed the function of C4HSL-dependent CmR expression by measuring optical density of the cultures containing chloramphenicol(Fig. 3-3-2-1).

In this experiment we prepared three plasmids, A, B and C. (See Fig. 3-3-2-2) Right after the C4HSL induction, we added chloramphenicol into the medium containing Company cell. We measured the optical density for about eight hours to estimate the concentration of the cell.

 
Fig. 3-3-2-2. Plasmids for the experiment of C4HSL-dependent CmR expression
 

2-2. C4HSL-dependent 3OC12HSL production

 

We performed a reporter assay by using reporter cells to characterize the function of C4HSL-dependent C4HSL production. Prhl(RL)-CmR-LasI cell containing constitutive RhlR generator expresses LasI and produces 3OC12HSL in the presence of C4HSL. Since 3OC12HSL is excreted to the culture, the supernatant of the sender cell contains 3OC12HSL when the part works as expected.

Reporter cells are incubated in the supernatant of the culture of sender cells. When there are 3OC12HSL in the supernatant, reporter cell expresses GFP. We checked the fluorescence of reporter cells to confirm the expression of 3OC12HSL. The expression of the reporter cells were measured by flow cytometer.(See Fig.3-3-2-3)

 
Fig. 3-3-2-3. Flow chart of C4HSL-dependent 3OC12HSL production Assay
Fig. 3-3-2-4.Plasmids for the experiment of C4HSL-dependent 3OC12HSL production

We prepared the following conditions for the induction of reporter cells. (Plux-CmR cell was used as the negative control. See Fig. 3-3-2-4)

(1) Culture containing Prhl(RL)-CmR-lasI cell with C4HSL induction

(2) Culture containing Prhl(RL)-CmR-lasI cell without induction

(3) Culture containing Plux-CmR cell with C4HSL induction

(4) Culture containing Plux-CmR cell without induction

(5) 5 microM of synthetic C4HSL in LB medium

(6) DMSO in LB medium

 

Reporter

E) The cell containing constitutive LasR generator and Plas-GFP cell
F) The cell containing constitutive LuxR generator and PlacIq-GFP cell…Positive control
G) The cell containing constitutive LuxR generator and Promoter-less-GFP cell…Negative control
 
 
 

3. Result

 

3-1. C4HSL-dependent CmR expression assay

We tested two types of culture condition which contains different concentration of chloramphenicol(Cm). (0 and 100 microg / mL)

Fig.3-3-3-1, Fig.3-3-3-2 shows the condition in the absence and presence of chloramphenicol, respectively.

Fig 3-3-3-1. shows that every cell can grow in the absence of chloramphenicol.

 
Fig. 3-3-3-1. C4HSL-Dependent Company growth with no Cm addition
 
Fig. 3-3-3-2. C4HSL-Dependent Company Growth in 100 microg/mL Cm
 

On the other hand, in the presence of chloramphenicol, the cell containing Prhl(RL)-CmR-LasI can grow only when induced by C4HSL. Without the induction of C4HSL, the cell cannot express CmR and cannot grow in the presence of chloramphenicol. As a result, we confirmed that Prhl(RL)-CmR-LasI expressed CmR when induced by C4HSL as expected.

 

3-2. C4HSL-dependent 3OC12HSL Production Assay

Fig. 3-3-3-3 shows the fluorescence intensities generated by the reporter cells. When the reporter cell E was incubated in the condition (1) (the culture of the induced Company cell), the fluorescence intensity of the reporter cell increased. Comparing the results of condition (1) and (2) reporter cell in the supernatant of (1) had 29-fold higher fluorescence intensity.

 

This result indicates that Company cell produced 3OC12HSL in response to C4HSL induction by the function of Prhl(RL)-CmR-LasI.

 

From this experiment, we confirmed that a new part Prhl(RL)-CmR-LasI synthesized 3OC12HSL (LasI) as expected.

Fig. 3-3-3-3. Company excretes 3OC12HSL when C4HSL exists
 
 
 
 

4. Materials and methods

 

4-1 Construction

-Strain

All the samples were JM2.300 strain.

-Plasmids

--C4HSL-dependent CmR expression

 
A. Ptet-GFP-Ptet-RhlR (pSB6A1), Prhl(RL)-CmR-LasI(pSB3K3)
 
Fig. 3-3-4-1.
 
B. Ptet-GFP-Ptet-RhlR (pSB6A1), PlacIq-CmR (pSB3K3)…Positive control
 
Fig. 3-3-4-2.
 
C. Ptet-GFP-Ptet-RhlR (pSB6A1), promoter less CmR (pSB3K3)… Negative control
 
Fig. 3-3-4-3.
--C4HSL-dependent 3OC12HSL production
 
 
Sender
A. Ptet-GFP-Ptet-RhlR (pSB6A1), Prhl(RL)-CmR-LasI (pSB3K3)
 
Fig. 3-3-4-4.
 
D. Ptet-GFP-Ptet-RhlR (pSB6A1), Plux-CmR (pSB3K3)
 
Fig. 3-3-4-5.
 
Reporter
 
E. Ptrc-LasR (pSB6A1), Plas-GFP (pSB3K3)
 
Fig. 3-3-4-6.
 
F. Ptet-LuxR (pSB6A1), PlacIq-GFP (pSB3K3)...Positive control
 
Fig. 3-3-4-7.
 
G. Ptet-LuxR (pSB6A1), Promoter-less-GFP (pSB3K3)...Negative control
 
Fig. 3-3-4-8.
 

4-2. Assay Protocol

4-2-1. C4HSL-Dependent CmR Expression Assay

1. Prepare overnight cultures for the sender cells in 3 mL LB medium, containing ampicillin (50 microg / mL) and kanamycin (30 microg / mL) at 37°C for 12h.
2. Make a 1:100 dilution in 3 mL of fresh LB containing antibiotic and grow the cells at 37°C
          until the observed OD590 reaches 0.5.(→fresh culture)
3. Add 30 microL of suspension in the following medium.
          1) 3 mL of LB containing Amp and Kan + 30 microL C4HSL (final concentration is 5 microM)
          2) 3 mL of LB containing Amp and Kan + 30 microL DMSO
          3) 3 mL of LB containing Amp, Kan and Cm (final concentration is 100 microg/mL)
                   + 30 microL C4HSL (final concentration is 500 microM)
          4) 3 mL of LB containing Amp, Kan and Cm (final concentration of Cm is 100 microg/mL) + 30 microL DMSO
4. Grow the samples of sender cells at 37°C for more than 8 hours.
5. Measure optical density every hour. (If the optical density is over 1.0, dilute the cell medium to 1/10.)
 

4-2-2. C4HSL-Dependent 3OC12HSL Production Assay

Prepare the supernatant of the sender cell
1. Prepare overnight cultures for the sender cells in 3 mL LB medium, containing ampicillin (50 microg / mL) and kanamycin (30 microg / mL) at 37°C for 12h.
2. Make a 1:100 dilution in 3 mL of fresh LB containing antibiotic and grow the cells at 37°C until the observed OD590 reaches 0.5.
3. Add 30 microL of the culture containing the cells in the following medium.
          a) Add 15 microL of 10 mM C4HSL to 3 mL LB containing Amp and Kan (final concentration is 50 microM)
          b) Add 15 microL DMSO to 3 mL of LB containing Amp+Kan
4. Grow the samples of sender cell at 37°C for 8 hours.
5. Measure the optical density every hour. (If the optical density is over 1.0, dilute the cell medium to 1/10.)
6. Centrifuge the sample at 9000x g, 4°C for 1 min. Filter sterilize the supernatant. (Pore size is 0.22 microm.)
7. Use the supernatant in reporter assay.
 
Reporter Assay
1. Prepare overnight cultures for the Reporter cell (E~G) in 3 mL LB medium, containing ampicillin (50 microg / mL) and kanamycin (30 microg / mL) at 37°C for 12h.
2. Make a 1:100 dilution in 3 mL of fresh LB + antibiotic and grow the cells at 37°C until you reach an 0.5 in OD590 (fresh culture).
3. Add 30 microL of suspension in the following medium.
          1) 2.7 mL filtrate of Aa +300 microL LB
          2) 2.7 mL filtrate of Ab +300 microL LB
          3) 2.7 mL filtrate of Da +300 microL LB
          4) 2.7 mL filtrate of Db +300 microL LB
          5) 3 mL LB + 5 microM C12HSL 3 microL (Final concentration is 5 nM)
          6) 3 mL LB + DMSO 3 microL
4. Grow the samples of Reporter cell in incubator at 37°C for 4 h.
5. Start preparing the flow cytometer 1 h before the end of incubation.
6. After the incubation, take the sample, and centrifuge at 9000x g, 1 min., 4°C.
7. Remove the supernatant by using P1000 pipette.
8. Add 1 mL of filtered PBS (phosphate-buffered saline) and suspend. (The ideal of OD is 0.3.)
9. Dispense all of each suspension into a disposable tube through a cell strainer.
10. Use flow cytometer to measure the fluorescence of GFP. (We used BD FACSCaliburTM Flow Cytometer of Becton, Dickenson and Company.)
 
 
 

5. Reference

1. Bo Hu et al. (2010) An Environment-Sensitive Synthetic Microbial Ecosystem. PLoS ONE 5(5): e10619