|
|
(4 intermediate revisions not shown) |
Line 32: |
Line 32: |
| </div> | | </div> |
| <div style="background-color:white; border-bottom-left-radius:10px;border-radius:10px; padding-left:10px;padding-right:10px;min-width:300px;margin-top:-50px;"> | | <div style="background-color:white; border-bottom-left-radius:10px;border-radius:10px; padding-left:10px;padding-right:10px;min-width:300px;margin-top:-50px;"> |
- | <a href="#"><img src="https://static.igem.org/mediawiki/2014/5/50/OxigemLabbook.png" style="position:absolute;width:6%;margin-left:84%;margin-top:-13%;z-index:10;"></a> | + | <a href="https://static.igem.org/mediawiki/2014/3/3d/OxigemLAB_BOOK.pdf" target="_blank"><img src="https://static.igem.org/mediawiki/2014/5/50/OxigemLabbook.png" style="position:absolute;width:6%;margin-left:84%;margin-top:-13%;z-index:10;"></a> |
| <a href="https://static.igem.org/mediawiki/2014/1/16/Oxigem_LAB_PROTOCOLS.pdf" target="_blank"><img src="https://static.igem.org/mediawiki/2014/a/a4/OxigemProtocols.png" style="position:absolute;width:6%;margin-left:91%;margin-top:-13%;z-index:10;"></a> | | <a href="https://static.igem.org/mediawiki/2014/1/16/Oxigem_LAB_PROTOCOLS.pdf" target="_blank"><img src="https://static.igem.org/mediawiki/2014/a/a4/OxigemProtocols.png" style="position:absolute;width:6%;margin-left:91%;margin-top:-13%;z-index:10;"></a> |
| | | |
Line 170: |
Line 170: |
| | | |
| | | |
- |
| |
- |
| |
- |
| |
- |
| |
- |
| |
- |
| |
- |
| |
- |
| |
- |
| |
- |
| |
- |
| |
- |
| |
- |
| |
- |
| |
- |
| |
- | <div class="row">
| |
- | <a href="#show4" class="show modelling-row" id="show4"><div class="modelling">
| |
- | <h1white>Modelling the biosensor to optimise ’ON’ and ‘OFF’ response</h1white>
| |
- | <img src="https://static.igem.org/mediawiki/2014/4/4d/Oxford_plus-sign-clip-art.png" style="float:right;position:relative; width:2%;" />
| |
- | </div></a>
| |
- |
| |
- | <a href="#hide4" class="hide" id="hide4"><div class="modelling">
| |
- | <h1white>Modelling the biosensor to optimise ’ON’ and ‘OFF’ response</h1white></div></a>
| |
- | <div class="list">
| |
- | <div class="white_news_block2">
| |
- | As described above, the ideal biosensor is binary and its fluorescence response can only take two values. This relies on the system having two features- a fast response time to concentration changes and a large amplitude of response. Having previously established the ideal concentrations of DCM and ATC <u>(see above)</u> for the biosensor, our next task was to predict what combination of controllable variables would result in the ideal binary behaviour. This is a very important step in synthetic biology because it allows us to crudely optimise the design before construction even begins. To test the response of our biosensor, we used a step function of DCM the initial and sudden contact of DCM with our bacteria and then removing DCM through <u>spinning the cells(?)</u>. In the real system, the DCM input would be a step in the curve and then a gradual negative ramp as the DCM was degraded.
| |
- | <br><br>
| |
- | The two parameters that are most easily changed in the initial production of the bacteria are the RBS strength and the degradation rate.
| |
- | <br><br>
| |
- | Increasing the Ribosome Binding Site (RBS) strength can greatly increase the translation initiation rate, hence resulting in amplified fluorescence. <u>(HOW?) (CORRECT + DETAIL?)</u>
| |
- | <br><br>
| |
- | The degradation rate of the fluorescent protein can also be changed by adding degradation tags. <u>(CORRECT + DETAIL?)</u>
| |
- |
| |
- |
| |
- | </div>
| |
- |
| |
- | </div>
| |
- | </div>
| |
| | | |
| | | |