Team:Paris Bettencourt/Project/Odor Library

From 2014.igem.org

(Difference between revisions)
 
(78 intermediate revisions not shown)
Line 10: Line 10:
background : rgb(255,0,99);
background : rgb(255,0,99);
}
}
 +
#topheader {
#topheader {
width : 100%;
width : 100%;
Line 48: Line 49:
background-color : transparent;
background-color : transparent;
}
}
-
        #fond {
 
-
                width : 100%
 
-
                height : 300px;
 
-
background : rgb(255,0,99);
 
-
        }
 
#headtable {
#headtable {
width : 92.5%;
width : 92.5%;
-
height : 300px;
+
height : 350px;
-
text-align : center;
+
background : rgb(255,0,99);
background : rgb(255,0,99);
                 margin-right : 3.75%;
                 margin-right : 3.75%;
Line 66: Line 61:
color : rgb(255,255,255);
color : rgb(255,255,255);
                 font-size : 14px;  
                 font-size : 14px;  
 +
                align : justify;
}
}
 +
#headtable tr td a {
 +
              color : rgb(193,192,197);
 +
        }
#tablelien {
#tablelien {
width : 100%;
width : 100%;
Line 73: Line 72:
}
}
#tablelien tr td {
#tablelien tr td {
-
width : 25%;
+
width : 20%;
height : 50px;
height : 50px;
color : rgb(197,192,193);
color : rgb(197,192,193);
Line 80: Line 79:
#tablelien tr td a {
#tablelien tr td a {
color : rgb(197,192,193);
color : rgb(197,192,193);
 +
        }
 +
        #fond {
 +
                width : 100%
 +
                height : 350px;
 +
background : rgb(255,0,99);
         }
         }
.project {
.project {
Line 86: Line 90:
}
}
.project .text1 {
.project .text1 {
 +
display : inline-block;
 +
vertical-align : middle;
 +
position : relative;
 +
width : 43%;
 +
margin-left : 4%;
 +
                font-size : 15px;
 +
                float : left;
 +
}
 +
.project .text2 {
 +
float : right;
 +
width : 43%;
 +
                margin-right : 4%;
 +
                font-size : 15px;
 +
}
 +
        .project .text2 img {
 +
                width : 100%;
 +
      }
 +
        .project .text1 img {
 +
                width : 100%;
 +
      }
 +
        #reference {
 +
width : 100%;
 +
height : 350px;
 +
display : inline-block;
 +
}
 +
#reference .text1 {
 +
                position : absolute;
display : inline-block;
display : inline-block;
vertical-align : middle;
vertical-align : middle;
Line 91: Line 122:
width : 44%;
width : 44%;
margin-left : 5%;
margin-left : 5%;
-
                 font-size : 15px;
+
                 font-size : 12px;
}
}
-
.project .text2 {
+
        #headtable tr td .text1 ul {
 +
                text-align : left;
 +
        }
 +
#reference .text2 {
position : absolute;
position : absolute;
width : 44%;
width : 44%;
Line 101: Line 135:
                 font-size : 12px;
                 font-size : 12px;
}
}
-
        .project .text2 img {
 
-
                width : 100%;
 
-
      }
 
-
        .project .text1 img {
 
-
                width : 100%;
 
-
      }
 
-
      #image1 {
 
-
                height : 600px;
 
-
                width : 75%;
 
-
                margin-left : 12.5%;
 
-
      }
 
#top {
#top {
position : fixed;
position : fixed;
Line 126: Line 149:
.nameimg {
.nameimg {
position : absolute;
position : absolute;
-
width : 200px;
+
width : 300px;
height : 200px;
height : 200px;
margin-left : 10%;
margin-left : 10%;
-
                margin-top : 40px;
 
background : transparent;
background : transparent;
z-index : 60;
z-index : 60;
Line 151: Line 173:
                         height : 20px;
                         height : 20px;
                 }
                 }
-
        #reference {
+
.lower {
-
width : 100%;
+
      font-size : 12px;
-
height : 350px;
+
}
-
display : inline-block;
+
-
}
+
-
#reference .text1 {
+
-
                position : absolute;
+
-
display : inline-block;
+
-
vertical-align : middle;
+
-
position : relative;
+
-
width : 44%;
+
-
margin-left : 5%;
+
-
                font-size : 12px;
+
-
}
+
-
#reference .text2 {
+
-
position : absolute;
+
-
width : 44%;
+
-
height : 250px;
+
-
                left : 51%;
+
-
                margin-top : 60px;
+
-
                font-size : 12px;
+
-
}
+
         #fond ul {
         #fond ul {
                 list-style-image : url("https://static.igem.org/mediawiki/2014/f/f2/MicodonPB.png");
                 list-style-image : url("https://static.igem.org/mediawiki/2014/f/f2/MicodonPB.png");
Line 179: Line 182:
                 color : rgb(255,0,99);
                 color : rgb(255,0,99);
         }
         }
 +
        #alignliste {
 +
                text-align : justify;
 +
        }
 +
table.tableizer-table {
 +
border: 1px solid #CCC; font-family: Arial, Helvetica, sans-serif
 +
font-size: 12px;
 +
}
 +
.tableizer-table td {
 +
padding: 4px;
 +
margin: 3px;
 +
border: 1px solid #ccc;
 +
}
 +
.tableizer-table th {
 +
background-color: #FA0063;
 +
color: #FFF;
 +
font-weight: bold;
 +
}
</style>
</style>
<body>
<body>
Line 189: Line 209:
         <table id=headtable>
         <table id=headtable>
<tr>
<tr>
-
<td><b>BACKGROUND</b></br><br>
+
<td><b><center>BACKGROUND</center></b></br><br>
-
<p class=text1>Synthetic enzymes can produce odors that humans experience directly, without special instruments. The banana and wintergreeen smell BioBricks are iGEM icons, and a favorite way to introduce genetic engineering. Like colors, smells can be combined to create new experiences. An expanded library of easy-to-use odor enzymes would take synthetic biology to new audiences for creativity, beauty and fun!</p></td>
+
<p class=text1>Synthetic enzymes can produce odors that humans experience directly, without special instruments. The banana and wintergreeen smell BioBricks are iGEM icons, and a favorite way to introduce genetic engineering. An expanded library of easy-to-use odor enzymes would take synthetic biology to new audiences for creativity, beauty and fun!</p></td>
-
<td><b>AIMS</b></br><br>
+
<td><b><center>AIMS</center></b></br><br>
-
<p class=text1>We want to standardize and simplify existing smell-producing BioBricks for banana, wintergreen, lemon and rain. We want to create new BioBricks for the aromas of popcorn and jasmine. A useful palette of genetic odors should follow standard organization principles and work "right out of the box" for anyone who wants to transform and play with odor genes.</p></td>
+
<p class=text1><left>We standardized and simplified existing smell-producing BioBricks for banana, wintergreen, lemon and rain. Also, we created new BioBricks for the aromas of popcorn and jasmine. We made an odor wheel made out of genetic odors that follow a standard organization so that the general public can play with odor genes.</left></li></ul></p></td>
-
<td><b>RESULTS</b></br><br>
+
<td><b><center>ACHIEVEMENTS</center></b></br><br>
-
<p class=text1>We created BioBricks coding for sequences for different enzymes to nullify the bad odor produced by <i>E. coli</i> and produce the smells that compose the main odor categories perceived by humans. The BioBricks submitted to be BioBrick registry for this portion of our project were: XXX </p></td>
+
<p class=text1><ul><li> Created BioBricks coding for sequences for different enzymes to nullify the bad odor produced by <i>E. coli.</i></li> <li>We produced the smells that compose the main odor categories perceived by humans.</li> <li>BioBricks submitted to be BioBrick registry: <a href="http://parts.igem.org/Part:BBa_K1403003">BBa_K1403003</a>, <a href="http://parts.igem.org/Part:BBa_K1403006">BBa_K1403006</a>, <a href="http://parts.igem.org/Part:BBa_K1403009">BBa_K1403009</a>, <a href="http://parts.igem.org/Part:BBa_K1403012">BBa_K1403012</a>, <a href="http://parts.igem.org/Part:BBa_K1403017">BBa_K1403017</a>, <a href="http://parts.igem.org/Part:BBa_K1403019">BBa_K1403019</a></li> </p></td>
</tr>
</tr>
</table>
</table>
Line 200: Line 220:
<table id=tablelien>
<table id=tablelien>
<tr>
<tr>
-
<td><a href="#part1">Aims and Achievement</a></td>
+
-
<td><a href="#part2">Introduction</a></td>
+
<td><a href="#part1">Introduction</a></td>
-
<td><a href="#part3">Results</a></td>
+
<td><a href="#part2">Results</a></td>
-
<td><a href="#part4">Methods</a></td>
+
<td><a href="#part3">Methods</a></td>
</tr>
</tr>
</table>
</table>
<div id=part1 class=project>
<div id=part1 class=project>
-
<p class=text2><img id=image1 src="https://static.igem.org/mediawiki/2014/9/9d/Odorpalette_PB.png"></p>
+
-
<h6>Aims and Achievement</h6><br>
+
<p class=text2>
-
<p class=text1>Here we present the design of an odor palette. It is composed of BioBricks containing coding sequences for different enzymes known to catalyze reactions that yield volatile compounds with characteristic smells. We included smells with different tonalities in order to explore the aromas resulting from different combinations of smelly units. The tonality of each smell is categorized as butter, balminess, citrus, non-citrus fruit and herbal. These cover half of the main odor categories perceivable to human beings. </p>
+
<img src="https://static.igem.org/mediawiki/2014/5/56/ODOR_WHEEL.png">
-
</div>
+
<b>Figure 1. Odor palette composed of BioBricks containing coding sequences for different enzymes known to catalyze reactions that yield volatile compounds with distinctive smells. We included odors with different tonalities in order to explore the aromas resulting from different combinations of smelly units. The tonality of each smell is categorized as butter, balminess, citrus, non-citrus fruit and herbal. These cover half of the main odor categories perceivable to human beings.</b> </br>
-
<div id=part2 class=project>
+
</br></br></br></br></br></br>
-
<p class=text2></p>
+
</p>
-
<h6>Introduction</h6><br>
+
<h6>Introduction</h6>
-
<p class=text1>There are complex relations among the stereochemistry of volatile compounds, their ratio within a particular mix, the amount of active olfactory receptors expressed in the smeller, as well as the distribution, and interaction of the different olfactory receptor neurons (ORNs). Odors spark neurochemical signals that are processed in different areas of the brain; they trigger complex cognitive processes that affect emotional responses such as motivation and memory. Although the precise molecular mechanisms behind odor perception have not been fully understood, there has been significant advance in the biosynthesis of organic volatile compounds using bacterial and fungal systems. </p>
+
<br>
 +
<p class=text1>All living things can detect chemical signals from the environment. In humans, the direct chemical sense takes the form of olfaction. Although our sense of smell is less sensitive than that of other mammals, it is still capable of detecting many compounds at concentrations lower than 1 part per million. Odors can trigger emotional responses and memory associations, making them a very direct and visceral way to experience the environment. <br>
 +
<br>
 +
 
 +
Bacterial enzymes can produce volatile compounds, including many that are surprising and fun. A generation of iGEMers has had the chance to experience bacteria that smell like <a href="BBa_J45200">banana</a> or <a href="BBa_J45200">mint</a>. The goal of this project is to expand the range of odors that can be created with synthetic enzymes. An easy-to-use, standardized genetic odor library will empower a new generation to play with synthetic biological smells.
 +
</p></div>
 +
<div id=part2 class=project>
 +
 
 +
<p class=text2>
 +
<img src="https://static.igem.org/mediawiki/2014/d/dd/Smellybricks.png"  | width='100px'>
 +
<b>Figure 2. Basic structure of the odor cassettes: iGEM prefix, <a href="http://parts.igem.org/Part:BBa_J23108">constitutive promoter</a>, synthetic ribosome-binding site, coding sequence with his tag, and iGEM suffix </b> </br>
 +
</p>
 +
<h6>Results</h6>
 +
<br>
 +
<p class=text1>
 +
We created BioBricks coding for sequences of different enzymes to explore each of the odors described in the palette. These sequences are codon-optmized for produced expression in <i>E. coli</i> and produce the smells that compose the main odor categories perceived by humans. </p>
</div>
</div>
-
<div id=part3 class=project>
+
<div id=part3 class=project>
-
<p class=text2></p>
+
<h6>Methods</h6>
-
<h6>Results</h6><br>
+
<br>
-
<p class=text1>Proper BioBrick characterization is needed before tinkering with expression levels; the possibility to change ribosomal binding sites according to the desired expression is included in our design. We would also like to develop auto-inducible smelly systems, as well as broaden the available tones in our palette. </p>
+
<p class=text1>
-
</div>
+
Odorless <i>E. coli</i>:
-
<div id=part4 class=project>
+
<br>
-
<p class=text2></p>
+
The tnaA deletion mutant <i>E. coli</i> was taken from location 63:E:9 in the Keio collection. Standard microbiology techniques were used to culture it in liquid and solid media. Subsequently, a single colony was taken to make a batch of Ca2Cl chemically competent cells using.
-
<h6>Methods</h6><br>
+
<br>
-
<p class=text1>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut imperdiet diam eget quam imperdiet imperdiet. Mauris dapibus risus felis, sed ornare diam accumsan aliquet. Sed eu turpis porta, porttitor tortor et, condimentum augue. Curabitur a maximus nisi. Vivamus vitae magna ex. Donec congue auctor odio vitae tempus. In a gravida neque, et tristique tortor. Phasellus a odio sit amet enim ornare lobortis. Morbi sodales, diam non rutrum aliquam, ligula mauris consectetur urna, sed interdum quam risus sit amet enim. Aenean euismod enim magna, id pretium eros molestie non. Proin rutrum lobortis leo, sit amet congue erat. Nulla congue pellentesque augue porta dignissim. Pellentesque quis ex sollicitudin, condimentum risus varius, aliquet ipsum. Ut pulvinar aliquet maximus. Praesent imperdiet interdum commodo. </p>
+
<br>
 +
BioBricks:
 +
<br>
 +
The coding sequences for <a href="http://parts.igem.org/Part:BBa_J45119">BMST1</a>,<a href="http://parts.igem.org/Part:BBa_J45199">ATF1</a>, <a href="http://parts.igem.org/Part:BBa_I742111">LIMS1</a> and <a href="http://parts.igem.org/Part:BBa_K221000">GGS</a> were extracted from the Registry. The ATF1 and LIMS1 generator BioBricks were taken from previous iGEM distribution kits and were cloned into the pSB1C3 vector downstream of BBa_J23108 constitutive promoter. The BMST1, JMT, and GDS sequences were codon optimized for expression in <i>E. coli</i>. A synthetic ribosome-binding site that includes XmaI and AgeI flanking restriction sites was designed using the RBS calculator from the Salis’ lab. All BioBricks were assembled using standard molecular biology cloning techniques and 3A iGEM assembly.  
 +
<br>
 +
<br>
 +
Characterization:
 +
<br>
 +
Transformed <i>E. coli</i> was grown in M9 minimal media with 2% glucose and complete amino acid mix overnight with the appropriate substrate.
 +
<table class="tableizer-table">
 +
<tr class="tableizer-firstrow"><th>System</th><th>Enzyme</th><th>Substrate</th><th>Concentration</th><th>Product</th></tr>
 +
<tr><td>Jasmine</td><td>JMT</td><td>Jasmonic acid</td><td>1 mM</td><td>Methyl jasmonate</td></tr>
 +
<tr><td>Mint</td><td>BMST1</td><td>Salicylic acid</td><td>2 mM</td><td>Methyl salicylate</td></tr>
 +
<tr><td>Banana</td><td>ATF1</td><td>Isoamyl alcohol</td><td>5 mM</td><td>Isoamyl acetate</td></tr>
 +
<tr><td>Limonene</td><td>LIMS1</td><td>Farnesyl diphosphate</td><td>Natural</td><td>(+)-Limonene</td></tr>
 +
<tr><td>Rain</td><td>G/G D-synthase</td><td>Farnesyl diphosphate</td><td>Natural</td><td>Geosmin</td></tr>
 +
<tr><td>Flowers</td><td>BMST1</td><td>Benzoic acid</td><td>5 mM</td><td>Methyl benzoate</td></tr>
 +
<tr><td>Butter</td><td>AldB</td><td>Acetolactic acid</td><td>-</td><td>Acetoin</td></tr>
 +
<tr><td>Sweat</td><td>agaA</td><td>3-M-2-hexenoic acid</td><td>-</td><td>3-HO-3-Methylhexanoic acid</td></tr>
 +
</table>
 +
<b>Table 1. Substrate concentrations (mM).</b> </br>
 +
 
 +
</p>
</div>
</div>
</body>
</body>
</html>
</html>
{{:Team:Paris_Bettencourt/Footer}}
{{:Team:Paris_Bettencourt/Footer}}

Latest revision as of 15:56, 3 December 2014

BACKGROUND


Synthetic enzymes can produce odors that humans experience directly, without special instruments. The banana and wintergreeen smell BioBricks are iGEM icons, and a favorite way to introduce genetic engineering. An expanded library of easy-to-use odor enzymes would take synthetic biology to new audiences for creativity, beauty and fun!

AIMS


We standardized and simplified existing smell-producing BioBricks for banana, wintergreen, lemon and rain. Also, we created new BioBricks for the aromas of popcorn and jasmine. We made an odor wheel made out of genetic odors that follow a standard organization so that the general public can play with odor genes.

ACHIEVEMENTS


Introduction Results Methods

Figure 1. Odor palette composed of BioBricks containing coding sequences for different enzymes known to catalyze reactions that yield volatile compounds with distinctive smells. We included odors with different tonalities in order to explore the aromas resulting from different combinations of smelly units. The tonality of each smell is categorized as butter, balminess, citrus, non-citrus fruit and herbal. These cover half of the main odor categories perceivable to human beings.






Introduction

All living things can detect chemical signals from the environment. In humans, the direct chemical sense takes the form of olfaction. Although our sense of smell is less sensitive than that of other mammals, it is still capable of detecting many compounds at concentrations lower than 1 part per million. Odors can trigger emotional responses and memory associations, making them a very direct and visceral way to experience the environment.

Bacterial enzymes can produce volatile compounds, including many that are surprising and fun. A generation of iGEMers has had the chance to experience bacteria that smell like banana or mint. The goal of this project is to expand the range of odors that can be created with synthetic enzymes. An easy-to-use, standardized genetic odor library will empower a new generation to play with synthetic biological smells.

Figure 2. Basic structure of the odor cassettes: iGEM prefix, constitutive promoter, synthetic ribosome-binding site, coding sequence with his tag, and iGEM suffix

Results

We created BioBricks coding for sequences of different enzymes to explore each of the odors described in the palette. These sequences are codon-optmized for produced expression in E. coli and produce the smells that compose the main odor categories perceived by humans.

Methods

Odorless E. coli:
The tnaA deletion mutant E. coli was taken from location 63:E:9 in the Keio collection. Standard microbiology techniques were used to culture it in liquid and solid media. Subsequently, a single colony was taken to make a batch of Ca2Cl chemically competent cells using.

BioBricks:
The coding sequences for BMST1,ATF1, LIMS1 and GGS were extracted from the Registry. The ATF1 and LIMS1 generator BioBricks were taken from previous iGEM distribution kits and were cloned into the pSB1C3 vector downstream of BBa_J23108 constitutive promoter. The BMST1, JMT, and GDS sequences were codon optimized for expression in E. coli. A synthetic ribosome-binding site that includes XmaI and AgeI flanking restriction sites was designed using the RBS calculator from the Salis’ lab. All BioBricks were assembled using standard molecular biology cloning techniques and 3A iGEM assembly.

Characterization:
Transformed E. coli was grown in M9 minimal media with 2% glucose and complete amino acid mix overnight with the appropriate substrate.

SystemEnzymeSubstrateConcentrationProduct
JasmineJMTJasmonic acid1 mMMethyl jasmonate
MintBMST1Salicylic acid2 mMMethyl salicylate
BananaATF1Isoamyl alcohol5 mMIsoamyl acetate
LimoneneLIMS1Farnesyl diphosphateNatural(+)-Limonene
RainG/G D-synthaseFarnesyl diphosphateNaturalGeosmin
FlowersBMST1Benzoic acid5 mMMethyl benzoate
ButterAldBAcetolactic acid-Acetoin
SweatagaA3-M-2-hexenoic acid-3-HO-3-Methylhexanoic acid
Table 1. Substrate concentrations (mM).

Centre for Research and Interdisciplinarity (CRI)
Faculty of Medicine Cochin Port-Royal, South wing, 2nd floor
Paris Descartes University
24, rue du Faubourg Saint Jacques
75014 Paris, France
+33 1 44 41 25 22/25
paris-bettencourt-igem@googlegroups.com
Copyright (c) 2014 igem.org. All rights reserved.