Team:XMU-China/Project FutureWork

From 2014.igem.org

(Difference between revisions)
 
(10 intermediate revisions not shown)
Line 57: Line 57:
}
}
#nav_bar_full_01{left: 70px;top:47px;}
#nav_bar_full_01{left: 70px;top:47px;}
-
#nav_bar_full_02{left: 210px;top:47px;}
+
#nav_bar_full_02{left: 210px;top:47px;letter-spacing:-2px;}
#nav_bar_full_03{left: 360px;top:47px;}
#nav_bar_full_03{left: 360px;top:47px;}
#nav_bar_full_04{left: 525px;top:47px;}
#nav_bar_full_04{left: 525px;top:47px;}
Line 248: Line 248:
/*Background*/
/*Background*/
.Project_title{position:absolute;width:300px;}
.Project_title{position:absolute;width:300px;}
-
#Project_FutureWork{position:relative;top:230px;width:1000px;margin-left:-400px;left:43%;}
+
#Project_FutureWork{position:relative;top:230px;width:1000px;margin-left:-500px;left:50%;}
#Project_FutureWork_wd{
#Project_FutureWork_wd{
background:rgba(0, 0, 0, 0.7) none repeat scroll 0 0 !important;/*FF*/
background:rgba(0, 0, 0, 0.7) none repeat scroll 0 0 !important;/*FF*/
Line 255: Line 255:
padding-left: 30px;
padding-left: 30px;
padding-right: 30px;
padding-right: 30px;
 +
line-height:2;
position:relative;
position:relative;
top:150px;
top:150px;
Line 465: Line 466:
<img id="ProjectFutureWork_title" class="Project_title" src="https://static.igem.org/mediawiki/2014/d/d1/Xmu_project_future_work_zwei.png"/>
<img id="ProjectFutureWork_title" class="Project_title" src="https://static.igem.org/mediawiki/2014/d/d1/Xmu_project_future_work_zwei.png"/>
<div id="Project_FutureWork_wd">
<div id="Project_FutureWork_wd">
-
<p style="line-height: 150%; font-size: 26px;">
+
<br/>
-
    &nbsp;
+
<p style="text-align: center; ">
 +
    <span style="font-size:29px;font-family:arial, helvetica, sans-serif"><strong>FUTURE WORK&nbsp;</strong></span>
</p>
</p>
-
<p style="text-align: justify; font-size: 1em;">
+
<p>
-
     Bacterial chemotaxis, which is universal in </span><span style="font-style: italic;">E.coli</span>, is defined as bacteria cells migration in response to a chemical stimulus. The natural </span><span style="font-style: italic;">E.coli</span> chemotaxis has limited receptor proteins which can respond to only six kinds of amino acid. Nevertheless, the reprogrammed chemotaxis named pseudotaxis makes </span><span style="font-style: italic;">E.coli</span> able to respond to molecules, whose receptor proteins do not exist in classical </span><span style="font-style: italic;">E.coli</span>, such as IPTG and L-arabinose, etc.
+
     <span style="font-family:arial, helvetica, sans-serif"><strong><span style="font-size:21px"></span><br/></strong></span>
</p>
</p>
-
<p style="text-align: justify; font-size: 1em;">
+
<p>
-
    &nbsp;
+
    <span style="font-family:arial, helvetica, sans-serif;font-size:21px"><b>The Role of Pattern Formation</b></span>
</p>
</p>
-
<p style="text-align: justify; font-size: 1em;">
+
<p>
-
     <span style="font-style: italic;">E.coli</span> have several flagella per cell (4–10 typically), which can rotate in two ways </span><span style="valign: sup;">[1]: counterclockwise (CCW) and clockwise (CW)</span><span style="valign: sup;"> [</span><span style="valign: sup;">2</span><span style="valign: sup;">]. The former aligns the flagella into a single rotating bundle, causing the bacterium to swim in line, while the later breaks the flagella bundle apart such that each flagellum points in a different direction, causing the bacterium to tumble. The motility is determined by the phosphorylation state of CheY protein governed by CheZ</span> protein. In the presence of CheZ</span> protein, CheY-P is dephosphorylated and produce CheY, thus CheY lead the flagellar motor to rotate CCW resulting in swimming. In the absence of CheZ</span>, CheY is phosphorylated into CheY-P which can bind to the flagellar switch protein FliM resulting in tumbling (</span><span style="font-weight: 700;">Figure 1). </span><span style="valign: sup;">[</span><span style="valign: sup;">2</span><span style="valign: sup;">] </span>
+
     <span style="font-family:arial, helvetica, sans-serif;font-size:18px"><br/></span>
</p>
</p>
-
<p style="text-align: justify; font-size: 1em;">
+
<p>
-
    &nbsp;
+
    <span style="font-family:arial, helvetica, sans-serif">Pattern formation is of fundamental importance in the coordination of multicellular behavior in a community or a large complex system. In physics and engineering, precisely control of the size of the parts and verification, validation and predictive capability of engineering system performance lay an important theoretical foundation for the application in actual engineering. <sup>[1] </sup>In biology, a vast range of intracellular and intercellular coupling mechanisms lead to the formation of patterns that govern fundamental physiological processes, such as embryogenesis, tumorigenesis and angiogenesis. <sup>[2][3][4] </sup>Also, the ability to engineer synthetic systems that can form spatial patterns is a critical step towards tissue engineering, targeted therapy and fabrication of biomaterials. <sup>[5][6] </sup>As the number of system components grows, it becomes increasingly difficult to coordinate component inputs and outputs to produce the overall desired behavior, which definitely restrict the application of gene therapy , tissue engineering and fabrication of biomaterials.</span>
</p>
</p>
-
<table style="border: currentColor; border-image: none; margin-right: auto; margin-left: auto; border-collapse: collapse; styleName: Normal Table; border-insideH: 1px none #000000; border-insideV: 1px none #000000; cellpadding: 0px 7px 0px 7px;">
+
<p>
-
     <tbody>
+
     <span style="font-family:arial, helvetica, sans-serif"><br/></span>
-
        <tr class="firstRow">
+
-
            <td style="padding: 0px 7px; border: 1px rgb(0, 0, 0); width: 434px; vertical-align: top;">
+
-
                <p style="text-align: justify; font-size: 1em;">
+
-
                    <img width="406" height="327" src="https://static.igem.org/mediawiki/2014/6/6b/Xmu_Project_background_Figure_1.png"/>
+
-
                </p>
+
-
            </td>
+
-
        </tr>
+
-
        <tr>
+
-
            <td style="border-width: medium 1px 1px; border-color: currentColor rgb(0, 0, 0) rgb(0, 0, 0); padding: 0px 7px; width: 434px; vertical-align: top;">
+
-
                <p style="text-align: justify; font-family: Times New Roman; font-size: 1em; styleName: Normal;">
+
-
                    <span ><b>Figure 1</b>. </span><span>Chemotaxis mechanism of</span><span style="font-style: italic;"> E.coli</span>. </span><span>The direction of rotation of the flagellar motor is controlled by the protein CheY. If the CheY is phosphorylated (CheY-P), it can bind to the flagellar motor protein FliM, c</span><span>ausing the cell to tumble. When</span><span> CheY is not phosphorylated, the flagellar motor</span><span> rotates counterclockwise (CCW). </span><span style="valign: sup;">[1]</span>
+
-
                </p>
+
-
            </td>
+
-
        </tr>
+
-
        <tr style="height: 0px;">
+
-
            <td style="border: currentColor; border-image: none; width: 434px;"></td>
+
-
        </tr>
+
-
    </tbody>
+
-
</table>
+
-
<p style="text-align: justify; font-size: 1em;">
+
-
    &nbsp;
+
</p>
</p>
-
<p style="text-align: justify; font-size: 1em;">
+
<p>
-
     <span >Therefore, if no CheZ</span> is expressed (such as </span><span style="font-style: italic;">E.coli</span> CL-1 with </span><span style="font-style: italic;">CheZ</span> gene knocked out of genome), CheY-P couldn’t be dephosphorylated so that flagella keep CW, thus </span><span style="font-style: italic;">E.coli</span> keep tumbling and perform non-motile ability on semi-solid culture medium (</span><span style="font-weight: 700;">Figure 2</span> left). With enough <span style="font-style: italic;">CheZ</span> expressed, <span style="font-style: italic;">E.coli</span> regain chemotaxis ability on semi-solid culture medium (<span style="font-weight: 700;">Figure 2</span> right). If one kind of molecule (such as IPTG) could stimulate circuit to express<span style="font-style: italic;"> CheZ</span>, reprogrammed </span><span style="font-style: italic;">E.coli</span> will have the tendency to migrate to it. We named the reprogrammed chemotaxis pseudotaxis. Therefore, we are able to reprogram bacterial chemotaxis by knocking </span><span style="font-style: italic;">CheZ</span> gene out of the wild-type genome to control the expression of </span><span style="font-style: italic;">CheZ</span> by logic gene circuit.</span>
+
     <span style="font-family:arial, helvetica, sans-serif;font-size:21px"><b>Perspective and Outlook</b></span>
</p>
</p>
-
<p style="text-align: justify; font-size: 1em;">
+
<p>
-
    &nbsp;
+
    <span style="font-family:arial, helvetica, sans-serif;font-size:18px"><br/></span>
</p>
</p>
-
<table style="border: currentColor; border-image: none; width: 586px; margin-right: auto; margin-left: auto; border-collapse: collapse; styleName: Normal Table; border-insideH: 1px none #000000; border-insideV: 1px none #000000; cellpadding: 0px 7px 0px 7px;">
+
<p>
-
     <tbody>
+
     <span style="font-family:arial, helvetica, sans-serif">Based on this motivation and our experimental results of forming quasi-hyperbola at the present stage, we are going to conduct and adjust experiments according to a more accurate modelling, which expect higher accuracy. As to modelling, because nonlinearities and stochasticity arise naturally, tools from the fields of nonlinear dynamics and statistical physics are extremely useful both in the generation of design specifications and for careful comparison between experiment and computational model. <sup>[7] </sup>Experimental and theoretical analyses reveal which kinetic parameters most significantly affect ring development over time. Construction and study of such synthetic multicellular systems can improve our quantitative understanding of naturally occurring developmental processes. Then it will lead us to understand and explain nature better. Based on a more accurate experiment and modeling, we will consider increasing the communication between the cells, introducing quorum-sensing in order to build more complex mathematical shapes, exerting environmental stimulus. Such systems level bioengineering can synergistically target multiple pathways, symptoms or targets, such as multiple cell populations or organs creating the potential for innovative environmental and therapeutic applications. <sup>[8]</sup> Increasing specificity of chemotaxis is another important task of us, as our new-design aptamer, which is specific towards theophylline, and the related experiments are under way.</span>
-
        <tr class="firstRow">
+
-
            <td style="padding: 0px 7px; border: 1px rgb(0, 0, 0); width: 397px; vertical-align: top;">
+
-
                <p style="text-align: justify; font-size: 1em; styleName: Normal;">
+
-
                    <img width="381" height="370" src="https://static.igem.org/mediawiki/2014/5/5e/Xmu_Project_Background_figure02-1.png"/>
+
-
                </p>
+
-
            </td>
+
-
            <td style="border-width: 1px 1px 1px medium; border-color: rgb(0, 0, 0) rgb(0, 0, 0) rgb(0, 0, 0) currentColor; padding: 0px 7px; width: 189px; vertical-align: top;">
+
-
                <p style="text-align: left; padding-bottom: 1px; font-size: 24px; border-bottom-color: rgb(170, 170, 170); border-bottom-width: 1px; border-bottom-style: solid; outlineLvl: 0;">
+
-
                    &nbsp;
+
-
                </p>
+
-
                <p style="text-align: left; padding-bottom: 1px; font-size: 16px; border-bottom-color: rgb(170, 170, 170); border-bottom-width: 1px; border-bottom-style: solid; outlineLvl: 0;">
+
-
                    <span style="color: #fff; font-size: 16px;">BBa_K1412000</span>
+
-
                </p>
+
-
                <p style="text-align: justify; font-size: 1em; styleName: Normal;">
+
-
                    <img width="190" height="55" src="https://static.igem.org/mediawiki/2014/f/f2/Xmu_Project_Background_figure02-2.png"/>
+
-
                </p>
+
-
                <p style="text-align: justify; font-size: 1em; styleName: Normal;">
+
-
                    &nbsp;
+
-
                </p>
+
-
                <h1 style="text-align: justify; padding-top: 0.5em; padding-bottom: 0.5em; font-size: 1em; border-bottom-color: rgb(170, 170, 170); border-bottom-width: 1px; border-bottom-style: solid; styleName: Normal; outlineLvl: 0;">
+
-
                    <span style="color:#fff; font-size: 16px; font-weight: 400;">BBa_J04450</span>
+
-
                </h1>
+
-
                <p style="text-align: justify; font-size: 1em; styleName: Normal;">
+
-
                    <img width="153" height="53" src="https://static.igem.org/mediawiki/2014/c/c2/Xmu_Project_Background_figure02-3.png"/>
+
-
                </p>
+
-
            </td>
+
-
        </tr>
+
-
        <tr>
+
-
            <td style="border-width: medium 1px 1px; border-color: currentColor rgb(0, 0, 0) rgb(0, 0, 0); padding: 0px 7px; width: 586px; vertical-align: top;" colspan="2">
+
-
                <p style="text-align: justify; font-size: 1em; styleName: Normal;font-family:Times New Roman;">
+
-
                    <span style="font-weight: 700;">Figure 2</span><span style="font-weight: 700;">.</span><span style="font-weight: 700;"> </span><span style="font-style: italic;">CL-1</span>&nbsp;could express&nbsp;<span style="font-style: italic;">CheZ</span>&nbsp;with&nbsp;BBa_K1412000&nbsp;to regain chemotaxis ability (the right colony). While with&nbsp;BBa_J04450 (the left colony)&nbsp;for comparison, no chemotaxis ability could be observed.&nbsp;</span>
+
-
                </p>
+
-
            </td>
+
-
        </tr>
+
-
        <tr style="height: 0px;">
+
-
            <td style="border: currentColor; border-image: none; width: 397px;"></td>
+
-
            <td style="border: currentColor; border-image: none; width: 189px;"></td>
+
-
        </tr>
+
-
    </tbody>
+
-
</table>
+
-
<p style="text-align: justify; font-size: 1em; styleName: Normal;">
+
-
    &nbsp;
+
</p>
</p>
-
<p style="text-align: justify; font-size: 1em; styleName: Normal;">
+
<p>
-
     <span >Besides, as aptamers have the potential to respond to almost all kinds of molecules and have already been used to regulate gene expression such as </span><span style="font-style: italic;">CheZ</span> to reprogram chemotaxis (<span style="font-weight: 700;">Figure 3</span>). We are also developing a new mechanism which combines aptamers with RNA-lock system to regulate target gene.
+
     <span style="font-family:arial, helvetica, sans-serif"><br/></span>
</p>
</p>
-
<p style="font-size: 18px;">
+
<p>
-
    &nbsp;
+
    <span style="font-family:arial, helvetica, sans-serif"><br/></span>
</p>
</p>
-
<table style="border: currentColor; border-image: none; width: 589px; margin-right: auto; margin-left: auto; border-collapse: collapse; styleName: Normal Table; border-insideH: 1px none #000000; border-insideV: 1px none #000000; cellpadding: 0px 7px 0px 7px;">
+
<p>
-
     <tbody>
+
     <span style="font-family:arial, helvetica, sans-serif;font-size:21px"><b>References</b></span>
-
        <tr class="firstRow">
+
-
            <td style="padding: 0px 7px; border: 1px rgb(0, 0, 0); width: 589px; vertical-align: top;">
+
-
                <p style="font-size: 18px;">
+
-
                    <img width="575" height="188" src="https://static.igem.org/mediawiki/2014/e/e9/Xmu_Project_Background_figure03.png"/>
+
-
                </p>
+
-
            </td>
+
-
        </tr>
+
-
        <tr>
+
-
            <td style="border-width: medium 1px 1px; border-color: currentColor rgb(0, 0, 0) rgb(0, 0, 0); padding: 0px 7px; width: 589px; vertical-align: top;">
+
-
                <p style="text-align: justify; font-family: Times New Roman; font-size: 1em; styleName: Normal;">
+
-
                    <span><b>Figure 3</b>. </span><span>Me</span><span>chanism of how aptamers control</span><span> the translation of CheZ</span> protein. In the absence of target molecules (theophylline as an example). The mRNA’s ribosome binding site is paired, which inhibits the translation of CheZ</span> protein. In the absence of CheZ</span>, CheY-P will remain phosphorylated and the cells tumble in place. While in the presence of theophylline, the mRNA’s ribosome binding site will expose and the CheZ</span> can be expressed, allowing the cells to run and tumble. </span><span style="valign: sup;">[1]</span>
+
-
                </p>
+
-
            </td>
+
-
        </tr>
+
-
        <tr style="height: 0px;">
+
-
            <td style="border: currentColor; border-image: none; width: 589px;"></td>
+
-
        </tr>
+
-
    </tbody>
+
-
</table>
+
-
<table style="border: currentColor; border-image: none; width: 589px; margin-right: auto; margin-left: auto; border-collapse: collapse; styleName: Normal Table; border-insideH: 1px none #000000; border-insideV: 1px none #000000; cellpadding: 0px 7px 0px 7px;">
+
-
    <tbody>
+
-
        <tr class="firstRow">
+
-
            <td style="padding: 0px 7px; border: 1px rgb(0, 0, 0); width: 589px; vertical-align: top;"></td>
+
-
        </tr>
+
-
        <tr style="height: 0px;">
+
-
            <td style="border: currentColor; border-image: none; width: 589px;"></td>
+
-
        </tr>
+
-
    </tbody>
+
-
</table>
+
-
<p style="font-size: 18px;">
+
-
    &nbsp;
+
</p>
</p>
-
<p style="text-align: justify; font-size: 1em;">
+
<p>
-
     <span >Characterizing the circuit we constructed, we combine mathematical modeling with experiments, using modeling to guide experiments and to explain experimental phenomena. We have got reasonable results for a broader range of applications. As we have proved that the chemotaxis of </span><span style="font-style: italic;">E.coli</span> could be well reprogrammed, we try to apply reprogrammed chemotaxis into practice. For example, we have already demonstrated that motile ability is positively associate with the expression strength of </span><span style="font-style: italic;">CheZ</span>, thus we can characterize the efficiency of RBS or promoter by migration distance. At the same time, we also develop a biosafety system which relies on reprogrammed chemotaxis.</span>
+
     <span style="font-family:arial, helvetica, sans-serif"><br/></span>
</p>
</p>
-
<p style="font-size: 18px;">
+
<p>
-
    &nbsp;
+
    <span style="font-family:arial, helvetica, sans-serif"><a href=“http://www.ncbi.nlm.nih.gov/pubmed/1994641”target="_blank">1. Oberkampf W L, Trucano T G, Hirsch C. Verification, validation, and predictive capability in computational engineering and physics[J]. Applied Mechanics Reviews, 2004, 57(5): 345-384.</a>
 +
</span>
</p>
</p>
-
<p style="text-align: justify; font-size: 1em;">
+
<p>
-
    <span >Last but not the least, we apply mathematical principles in our project. Mathematics is the simplest and clearest language, whose value to the development of human civilization is now widely recognized because of its extensive application of science, society and daily life. However, the mathematical laws in life sciences is still unclear and even in chaos. Luckily, synthetic biology can overcome these shortcomings on some level. Based on this, we design a gene circuit and expect mathematical regularities to realize the regulation and control of life activities. We hope our work can inspire people&#39;s interests to combine mathematics with synthetic biology.</span>
+
    <span style="font-family:arial, helvetica, sans-serif"><a href=“http://link.springer.com/article/10.1007%2FBF00289234”target="_blank">2. Gierer A, Meinhardt H. A theory of biological pattern formation[J]. Kybernetik, 1972, 12(1): 30-39.</a>
 +
</span>
</p>
</p>
-
<p style="font-size: 18px;">
+
<p>
-
    &nbsp;
+
    <span style="font-family:arial, helvetica, sans-serif"><a href=“http://link.springer.com/article/10.1007%2Fs002850000067”target="_blank">3. Chaplain M A J, Ganesh M, Graham I G. Spatio-temporal pattern formation on spherical surfaces: numerical simulation and application to solid tumour growth[J]. Journal of mathematical biology, 2001, 42(5): 387-423.</a>
 +
</span>
</p>
</p>
-
<p style="font-size: 18px;">
+
<p>
-
     <span style="font-size: 18px; font-weight: 700;">R</span><span style="font-size: 18px; font-weight: 700;">eference</span><span style="font-size: 18px; font-weight: 700;">s</span>
+
     <span style="font-family:arial, helvetica, sans-serif"><a href=“http://www.springer.com/engineering/biomedical+engineering/book/978-3-642-30855-0?token=gbgen&wt_mc=Google-_-Book+Search-_-Springer-_-EN&otherVersion=978-3-642-30856-7”target="_blank">4. Boas S E M, Palm M M, Koolwijk P, et al. Mechanical and Chemical Signaling in Angiogenesis[M]. Springer Berlin Heidelberg, 2013:161-183.</a>
 +
</span>
</p>
</p>
-
<p style="font-size: 18px;">
+
<p>
-
     <span >1. </span><span style="color: rgb(0, 0, 255); text-decoration: underline; styleName: Default Paragraph Font;">http://en.wikipedia.org/wiki/Chemotaxis</span>
+
     <span style="font-family:arial, helvetica, sans-serif"><a href=“http://www.ncbi.nlm.nih.gov/pubmed/14561699”target="_blank">5. Abramsson A, Lindblom P, Betsholtz C. Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors[J]. The Journal of clinical investigation, 2003, 112(8): 1142-1151.</a>
 +
</span>
</p>
</p>
-
<p style="text-align: justify; font-size: 1em;">
+
<p>
-
    <span >2. Topp S, Gallivan J P. Guiding bacteria with small molecules and RNA[J]. Journal of the American Chemical Society, 2007, 129(21): 6807-6811.</span>
+
    <span style="font-family:arial, helvetica, sans-serif"><a href=“http://www.ncbi.nlm.nih.gov/pubmed/14520402/”target="_blank">6. Zhang S. Fabrication of novel biomaterials through molecular self-assembly[J]. Nature biotechnology, 2003, 21(10): 1171-1178.</a>
 +
</span>
</p>
</p>
-
<p style="text-align: justify; font-size: 1em;">
+
<p>
-
     <span style="color: rgb(0, 0, 255); text-decoration: underline; styleName: Default Paragraph Font;">http://pubs.acs.org/doi/abs/10.1021/ja0692480</span>
+
     <span style="font-family:arial, helvetica, sans-serif"><a href=“http://www.ncbi.nlm.nih.gov/pubmed/15858574”target="_blank">7. Basu S, Gerchman Y, Collins C H, et al. A synthetic multicellular system for programmed pattern formation[J]. Nature, 2005, 434(7037): 1130-1134.</a>
 +
</span>
</p>
</p>
-
<p style="text-align: justify; font-size: 1em;">
+
<p>
-
    &nbsp;
+
    <span style="font-family:arial, helvetica, sans-serif"><a href=“http://www.ncbi.nlm.nih.gov/pubmed/19461664”target="_blank">8. Purnick P E M, Weiss R. The second wave of synthetic biology: from modules to systems[J]. Nature reviews Molecular cell biology, 2009, 10(6): 410-422</a>
 +
</span>
</p>
</p>
-
<p style="text-align: justify; font-size: 1em;">
+
<p>
-
     &nbsp;
+
     <br/>
</p>
</p>
</div>
</div>

Latest revision as of 03:42, 18 October 2014

side_bar


FUTURE WORK 


The Role of Pattern Formation


Pattern formation is of fundamental importance in the coordination of multicellular behavior in a community or a large complex system. In physics and engineering, precisely control of the size of the parts and verification, validation and predictive capability of engineering system performance lay an important theoretical foundation for the application in actual engineering. [1] In biology, a vast range of intracellular and intercellular coupling mechanisms lead to the formation of patterns that govern fundamental physiological processes, such as embryogenesis, tumorigenesis and angiogenesis. [2][3][4] Also, the ability to engineer synthetic systems that can form spatial patterns is a critical step towards tissue engineering, targeted therapy and fabrication of biomaterials. [5][6] As the number of system components grows, it becomes increasingly difficult to coordinate component inputs and outputs to produce the overall desired behavior, which definitely restrict the application of gene therapy , tissue engineering and fabrication of biomaterials.


Perspective and Outlook


Based on this motivation and our experimental results of forming quasi-hyperbola at the present stage, we are going to conduct and adjust experiments according to a more accurate modelling, which expect higher accuracy. As to modelling, because nonlinearities and stochasticity arise naturally, tools from the fields of nonlinear dynamics and statistical physics are extremely useful both in the generation of design specifications and for careful comparison between experiment and computational model. [7] Experimental and theoretical analyses reveal which kinetic parameters most significantly affect ring development over time. Construction and study of such synthetic multicellular systems can improve our quantitative understanding of naturally occurring developmental processes. Then it will lead us to understand and explain nature better. Based on a more accurate experiment and modeling, we will consider increasing the communication between the cells, introducing quorum-sensing in order to build more complex mathematical shapes, exerting environmental stimulus. Such systems level bioengineering can synergistically target multiple pathways, symptoms or targets, such as multiple cell populations or organs creating the potential for innovative environmental and therapeutic applications. [8] Increasing specificity of chemotaxis is another important task of us, as our new-design aptamer, which is specific towards theophylline, and the related experiments are under way.



References


1. Oberkampf W L, Trucano T G, Hirsch C. Verification, validation, and predictive capability in computational engineering and physics[J]. Applied Mechanics Reviews, 2004, 57(5): 345-384.

2. Gierer A, Meinhardt H. A theory of biological pattern formation[J]. Kybernetik, 1972, 12(1): 30-39.

3. Chaplain M A J, Ganesh M, Graham I G. Spatio-temporal pattern formation on spherical surfaces: numerical simulation and application to solid tumour growth[J]. Journal of mathematical biology, 2001, 42(5): 387-423.

4. Boas S E M, Palm M M, Koolwijk P, et al. Mechanical and Chemical Signaling in Angiogenesis[M]. Springer Berlin Heidelberg, 2013:161-183.

5. Abramsson A, Lindblom P, Betsholtz C. Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors[J]. The Journal of clinical investigation, 2003, 112(8): 1142-1151.

6. Zhang S. Fabrication of novel biomaterials through molecular self-assembly[J]. Nature biotechnology, 2003, 21(10): 1171-1178.

7. Basu S, Gerchman Y, Collins C H, et al. A synthetic multicellular system for programmed pattern formation[J]. Nature, 2005, 434(7037): 1130-1134.

8. Purnick P E M, Weiss R. The second wave of synthetic biology: from modules to systems[J]. Nature reviews Molecular cell biology, 2009, 10(6): 410-422