Team:XMU-China/Project Application BlackHole

From 2014.igem.org

(Difference between revisions)
 
(24 intermediate revisions not shown)
Line 57: Line 57:
}
}
#nav_bar_full_01{left: 70px;top:47px;}
#nav_bar_full_01{left: 70px;top:47px;}
-
#nav_bar_full_02{left: 210px;top:47px;}
+
#nav_bar_full_02{left: 210px;top:47px;letter-spacing:-2px}
#nav_bar_full_03{left: 360px;top:47px;}
#nav_bar_full_03{left: 360px;top:47px;}
#nav_bar_full_04{left: 525px;top:47px;}
#nav_bar_full_04{left: 525px;top:47px;}
Line 255: Line 255:
padding-left: 30px;
padding-left: 30px;
padding-right: 30px;
padding-right: 30px;
 +
line-height:2;
position:relative;
position:relative;
top:150px;
top:150px;
Line 350: Line 351:
$(".navbar_main").mouseenter(function(){
$(".navbar_main").mouseenter(function(){
var nav_bar_hover_target = $(this);
var nav_bar_hover_target = $(this);
-
nav_bar_hover_target.children(".navbar_sub").slideDown();
+
nav_bar_hover_target.children(".navbar_sub").stop().slideDown();
$(".navbar_main").mouseleave(function(){
$(".navbar_main").mouseleave(function(){
var nav_bar_hoveroff_target = $(this);
var nav_bar_hoveroff_target = $(this);
-
nav_bar_hoveroff_target.children(".navbar_sub").slideUp();
+
nav_bar_hoveroff_target.children(".navbar_sub").stop().slideUp();
});
});
});
});
Line 362: Line 363:
<body style="font-family:Arial;color:#8ccFFF">
<body style="font-family:Arial;color:#8ccFFF">
<div id="background" style="position:fixed;z-index:-1;width:100%;height:100%;top:0px;left:0px;">
<div id="background" style="position:fixed;z-index:-1;width:100%;height:100%;top:0px;left:0px;">
-
<img src="https://static.igem.org/mediawiki/2014/d/d1/XMU-Project-background.jpg" width="100%" height="100%"/>
+
<img src="https://static.igem.org/mediawiki/2014/d/d1/XMU-Project-background.jpg" width="100%" height="105%"/>
</div>
</div>
<div id="warp_navbar_main">
<div id="warp_navbar_main">
Line 468: Line 469:
<div id="Project_Application_BlackHole_wd">
<div id="Project_Application_BlackHole_wd">
<h1 style="text-align: center; line-height: 200%; padding-top: 22px; padding-bottom: 22px; font-size: 29px; styleName: Normal; outlineLvl: 0;">
<h1 style="text-align: center; line-height: 200%; padding-top: 22px; padding-bottom: 22px; font-size: 29px; styleName: Normal; outlineLvl: 0;">
-
     <span style="font-size: 27px;">Black hole</span>
+
     <span style="font-size: 27px;">BLACK HOLE</span>
</h1>
</h1>
<p style="text-align: right;font-size: 18px;">
<p style="text-align: right;font-size: 18px;">
Line 477: Line 478:
</p>
</p>
<p>
<p>
-
     Thousands of years ago in China, people began to preserve food by curing them which was recorded in <em><span style="font-family:times new roman">Qimin Yaoshu</span></em> around 540 AD (<strong>Figure 1</strong>). Curing is any of various food preservation and flavoring processes of foods such as meat, fish and vegetables, by the addition of a combination of salt, nitrates, nitrite or sugar and it is one of the oldest methods of preserving food.<sup>[1]</sup> Table salt is the primary ingredient used in food curing. Removal of water and addition of salt to meat creates a solute-rich environment where osmotic pressure draws water out of microorganisms, slowing down their growth. Doing this requires a concentration of salt of nearly 20%. It has already been proved that 5% concentration of NaCl could inhibit the growth of <em><span style="font-family:times new roman">E.coli</span></em>. <sup>[2]</sup> However, utilizing hyperosmotic pressure to kill <em><span style="font-family:times new roman">E.coli</span></em> haven’t been fully explored in synthetic biology. This year, our team have put efforts on this topic and developed a system that will contribute to biosafety.
+
<p style="font-size:20px;">
 +
    <span style="font-weight: 700;">Overview</span>
 +
</p>
 +
     Thousands of years ago in China, people began to preserve food by curing them which was recorded in <em><span style="font-family:times new roman">Qimin Yaoshu</span></em> around 540 AD (<strong>Figure 1</strong>). Curing is any of various food preservation and flavoring processes of foods such as meat, fish and vegetables, by the addition of a combination of salt, nitrates, nitrite or sugar and it is one of the oldest methods of preserving food.<sup>[1]</sup> Table salt is the primary ingredient used in food curing. Removal of water and addition of salt to meat creates a solute-rich environment where osmotic pressure draws water out of microorganisms, slowing down their growth. Doing this requires a concentration of salt of nearly 20%. It has already been proved that 5% concentration of NaCl could inhibit the growth of <em><span style="font-family:times new roman">E. coli</span></em>. <sup>[2]</sup> However, utilizing hyperosmotic pressure to kill <em><span style="font-family:times new roman"> E. coli</span></em> haven’t been fully explored in synthetic biology. This year, our team have put efforts on this topic and developed a system that will contribute to biosafety.
</p>
</p>
<p style="font-family: Times New Roman;">
<p style="font-family: Times New Roman;">
Line 510: Line 514:
</p>
</p>
<p>
<p>
-
     <em><span style="font-family:times new roman">E.coli</span></em> makes use of the EnvZ/OmpR system to mediate signal transduction in response to environmental osmolarity changes. EnvZ, a histidine kinase, undergoes trans-autophosphorylation, then the high-energy phosphoryl group is subsequently transferred to OmpR, a response regulator. In our system, we involved OmpR-controlled promoter (pOmpR) in (<strong>Figure 2</strong>). The expression strength of pOmpR depends upon the medium osmolarity. When medium osmolarity is increasing, the EnvZ will phosphorylate more OmpR into phosphorylated OmpR (OmpR-P), resulting in stronger expression strength of pOmpR. In our circuitry design, <span style="font-family:times new roman"><em>CheZ</em></span> is upstream regulated by pOmpR (Figure 2).
+
     <em><span style="font-family:times new roman">E. coli</span></em> makes use of the EnvZ/OmpR system to mediate signal transduction in response to environmental osmolarity changes. EnvZ, a histidine kinase, undergoes trans-autophosphorylation, then the high-energy phosphoryl group is subsequently transferred to OmpR, a response regulator. In our system, we involved OmpR-controlled promoter (pOmpR) in (<strong>Figure 2</strong>). The expression strength of pOmpR depends upon the medium osmolarity. When medium osmolarity is increasing, the EnvZ will phosphorylate more OmpR into phosphorylated OmpR (OmpR-P), resulting in stronger expression strength of pOmpR. In our circuitry design, <span style="font-family:times new roman"><em>CheZ</em></span> is upstream regulated by pOmpR (<strong>Figure 2</strong>).
</p>
</p>
<p style="font-family: Times New Roman;">
<p style="font-family: Times New Roman;">
Line 520: Line 524:
             <td style="padding: 0px 7px; border: 1px rgb(0, 0, 0); width: 553px; vertical-align: top;">
             <td style="padding: 0px 7px; border: 1px rgb(0, 0, 0); width: 553px; vertical-align: top;">
                 <p style="font-family: Times New Roman;">
                 <p style="font-family: Times New Roman;">
-
                     <img width="470" height="302" style="font-family: Times New Roman;background-color:white" src="https://static.igem.org/mediawiki/2014/f/f8/Wiki%E8%83%8C%E6%99%AFzwei.png"/>
+
                     <img width="470" height="302" style="font-family: Times New Roman;background-color:white" src="https://static.igem.org/mediawiki/2014/0/02/XMU-Project-Blackhole.jpg"/>
                 </p>
                 </p>
             </td>
             </td>
Line 563: Line 567:
             <td style="border-width: medium 1px 1px; border-color: currentColor rgb(0, 0, 0) rgb(0, 0, 0); padding: 0px 7px; width: 561px; vertical-align: top;">
             <td style="border-width: medium 1px 1px; border-color: currentColor rgb(0, 0, 0) rgb(0, 0, 0); padding: 0px 7px; width: 561px; vertical-align: top;">
                 <p style="font-family: Times New Roman;">
                 <p style="font-family: Times New Roman;">
-
                     <span style="font-family: Times New Roman; font-weight: 700;">Figure 3</span><span style="font-family: Times New Roman; font-weight: 700;">.</span><span style="font-family: Times New Roman;"> The plot of moving radius versus sucrose concentration. The four curves were measured after 10h, 11h, 12h and 16.5h respectively.</span>
+
                     <span style="font-family: Times New Roman; font-weight: 700;">Figure 3</span><span style="font-family: Times New Roman; font-weight: 700;">.</span><span style="font-family: Times New Roman;"> The plot of moving radius versus sucrose concentration. The four curves were measured after 10 h, 11 h, 12 h and 16.5 h respectively.</span>
                 </p>
                 </p>
             </td>
             </td>
Line 584: Line 588:
<br/>
<br/>
<p>
<p>
-
     Based on the characterization, we spotted hyperosmotic pressure spot and reprogrammed <span style="font-family:times new roman"><em>CL-1</em></span> spot on semi-solid medium culture as <strong>Figure 4 </strong>shows. The concentration will decrease with the increase of the distance away from hyperosmotic pressure spot. As osmotic pressure is proportional to the medium concentration. The moving tendency of reprogrammed <span style="font-family:times new roman"><em>CL-1</em></span> will orient to the hyperosmotic pressure spot. Even at the inhibiting osmotic pressure, the motile ability is still stronger than that without any inducer. So that reprogrammed <span style="font-family:times new roman"><em>CL-1</em></span> may even swim towards the high-osmotic site and die. The killing mechanism is just like the black hole. When the bacteria move into the “event horizon” where the osmotic pressure reaches to the critical value named the killing osmotic pressure, the bacteria can’t go out of the border and be killed finally.
+
     Based on the characterization, we spotted hyperosmotic pressure spot and reprogrammed <span style="font-family:times new roman">CL-1</span> spot on semi-solid medium culture as <strong>Figure 4 </strong>shows. The concentration will decrease with the increase of the distance away from hyperosmotic pressure spot. As osmotic pressure is proportional to the medium concentration. The moving tendency of reprogrammed <span style="font-family:times new roman">CL-1</span> will orient to the hyperosmotic pressure spot. Even at the inhibiting osmotic pressure, the motile ability is still stronger than that without any inducer. So that reprogrammed <span style="font-family:times new roman">CL-1</span> may even swim towards the high-osmotic site and die. The killing mechanism is just like the black hole. When the bacteria move into the “event horizon” where the osmotic pressure reaches to the critical value named the killing osmotic pressure, the bacteria can’t go out of the border and be killed finally.
</p>
</p>
<p style="font-family: Times New Roman;">
<p style="font-family: Times New Roman;">
Line 600: Line 604:
         <tr>
         <tr>
             <td style="border-width: medium 1px 1px; border-color: currentColor rgb(0, 0, 0) rgb(0, 0, 0); padding: 0px 7px; width: 514px; vertical-align: top;">
             <td style="border-width: medium 1px 1px; border-color: currentColor rgb(0, 0, 0) rgb(0, 0, 0); padding: 0px 7px; width: 514px; vertical-align: top;">
-
                 <p style="font-family: Times New Roman;">
+
                 <p style="text-align:center;font-family: Times New Roman;">
-
                     <img width="499" height="276" style="font-family: Times New Roman;" src="https://static.igem.org/mediawiki/parts/9/9d/Xmu_project_application_BlackHole05.png"/>
+
                     <img width="400" style="font-family: Times New Roman;" src="https://static.igem.org/mediawiki/parts/9/9d/Xmu_project_application_BlackHole05.png"/>
                 </p>
                 </p>
             </td>
             </td>
Line 607: Line 611:
         <tr>
         <tr>
             <td style="border-width: medium 1px 1px; border-color: currentColor rgb(0, 0, 0) rgb(0, 0, 0); padding: 0px 7px; width: 514px; vertical-align: top;">
             <td style="border-width: medium 1px 1px; border-color: currentColor rgb(0, 0, 0) rgb(0, 0, 0); padding: 0px 7px; width: 514px; vertical-align: top;">
-
                 <p style="font-family: Times New Roman;">
+
                 <p style="text-align:center;font-family: Times New Roman;">
                     <span style="font-family: Times New Roman; font-weight: 700;">Figure </span><span style="font-family: Times New Roman; font-weight: 700;">4</span><span style="font-family: Times New Roman; font-weight: 700;">.</span><span style="font-family: Times New Roman;"> Schematic of k</span><span style="font-family: Times New Roman;">illing bacteria by black hole.</span>
                     <span style="font-family: Times New Roman; font-weight: 700;">Figure </span><span style="font-family: Times New Roman; font-weight: 700;">4</span><span style="font-family: Times New Roman; font-weight: 700;">.</span><span style="font-family: Times New Roman;"> Schematic of k</span><span style="font-family: Times New Roman;">illing bacteria by black hole.</span>
                 </p>
                 </p>
Line 621: Line 625:
</p>
</p>
<p>
<p>
-
     We draw a horizontal line with 10% sucrose and erect line with water, and spotted cells on the cross (<strong>Figure 5</strong>). Culturing for 48 hours, we observed that reprogrammed <span style="font-family:times new roman"><em>E.coli</em></span> has significant orientation to high concentration line. As high concentration sucrose generates high hyperosmosis, it has proved that <span style="font-family:times new roman"><em>CL-1</em></span> has the tendency swimming to high osmotic pressure.
+
     We draw a horizontal line with 10% sucrose and erect line with water, and spotted cells on the cross (<strong>Figure 5</strong>). Culturing for 48 hours, we observed that reprogrammed <span style="font-family:times new roman"><em>E. coli</em></span> has significant orientation to high concentration line. As high concentration sucrose generates high hyperosmosis, it has proved that <span style="font-family:times new roman">CL-1</span> has the tendency swimming to high osmotic pressure.
</p>
</p>
<table style="border: currentColor; border-image: none; width: 604px; margin-right: auto; margin-left: auto; border-collapse: collapse; styleName: Normal Table; border-insideH: 1px none #000000; border-insideV: 1px none #000000; cellpadding: 0px 7px 0px 7px;">
<table style="border: currentColor; border-image: none; width: 604px; margin-right: auto; margin-left: auto; border-collapse: collapse; styleName: Normal Table; border-insideH: 1px none #000000; border-insideV: 1px none #000000; cellpadding: 0px 7px 0px 7px;">
Line 636: Line 640:
             <td style="border-width: medium 1px 1px; border-color: currentColor rgb(0, 0, 0) rgb(0, 0, 0); padding: 0px 7px; width: 604px; vertical-align: top;">
             <td style="border-width: medium 1px 1px; border-color: currentColor rgb(0, 0, 0) rgb(0, 0, 0); padding: 0px 7px; width: 604px; vertical-align: top;">
                 <p style="font-family: Times New Roman;">
                 <p style="font-family: Times New Roman;">
-
                     <span style="font-family: Times New Roman; font-weight: 700;">Figure 5 </span><span style="font-family: Times New Roman;">Drawing h</span><span style="font-family: Times New Roman;">orizontal</span><span style="font-family: Times New Roman;"> line with 10% sucrose and erect line with water. Spotting cells on the cross. Two plates are </span><span style="font-family: Times New Roman;">parallel</span><span style="font-family: Times New Roman;"> experiment.</span>
+
                     <span style="font-family: Times New Roman; font-weight: 700;">Figure 5. </span><span style="font-family: Times New Roman;">Drawing h</span><span style="font-family: Times New Roman;">orizontal</span><span style="font-family: Times New Roman;"> line with 10% sucrose and erect line with water. Spotting cells on the cross. Two plates are </span><span style="font-family: Times New Roman;">parallel</span><span style="font-family: Times New Roman;"> experiment.</span>
                 </p>
                 </p>
             </td>
             </td>
Line 653: Line 657:
<p>
<p>
The sources (such as NaCl and sucrose) to create hyperosmotic pressure are cheap, accessible and environmentally friendly, while antibiotics is expensive and have a bad effect on environmental microbiology because of drug resistance. If our black hole system could be fully developed, it will reduce the barriers to microbiology research especially for the scientists in poor countries.
The sources (such as NaCl and sucrose) to create hyperosmotic pressure are cheap, accessible and environmentally friendly, while antibiotics is expensive and have a bad effect on environmental microbiology because of drug resistance. If our black hole system could be fully developed, it will reduce the barriers to microbiology research especially for the scientists in poor countries.
 +
</p>
 +
<p>
 +
</br>
 +
</p>
 +
<p>Want to see more applications: <a href="https://2014.igem.org/Team:XMU-China/Project_Application_RBSpromoter" target="_blank">Promoter Yardstick</a href="https://2014.igem.org/Team:XMU-China/Project_Application_RBSpromoter" target="_blank">, <a href="https://2014.igem.org/Team:XMU-China/Project_Application_Aptamer" target="_blank">Aptamer Key-Lock</a href="https://2014.igem.org/Team:XMU-China/Project_Application_Aptamer" target="_blank">, <a href="https://2014.igem.org/Team:XMU-China/Project_Application_OscillationTimer" target="_blank">Oscillation timer</a href="https://2014.igem.org/Team:XMU-China/Project_Application_OscillationTimer" target="_blank">.</p>
 +
<p>
 +
</br>
</p>
</p>
<p style="font-family: Times New Roman;">
<p style="font-family: Times New Roman;">
Line 666: Line 677:
     <span style="font-family: Times New Roman;">1. </span><span style="color: rgb(5, 99, 193); text-decoration: underline; styleName: Default Paragraph Font;">http://en.wikipedia.org/wiki/Curing_(food_preservation)</span>
     <span style="font-family: Times New Roman;">1. </span><span style="color: rgb(5, 99, 193); text-decoration: underline; styleName: Default Paragraph Font;">http://en.wikipedia.org/wiki/Curing_(food_preservation)</span>
</p>
</p>
 +
<p style="text-align: justify; styleName: Normal;">
<p style="text-align: justify; styleName: Normal;">
-
     <span style="font-family: Times New Roman;">2. </span><span style="font-size: 14px;">SUN Z, WANG J, LU M, et al. The Inhibitory Function of NaCl to a Few Common Bacteria [J][J]. Sea-Lake Salt and Chemical Industry, 2007, 1: 004.</span>
+
     <span style="font-family: Times New Roman;">2. <a href="http://en.cnki.com.cn/Article_en/CJFDTOTAL-HHYH200701004.htm" target="_blank"></span><span style="font-size: 14px;">SUN Z, WANG J, LU M, et al. The Inhibitory Function of NaCl to a Few Common Bacteria [J][J]. Sea-Lake Salt and Chemical Industry, 2007, 1: 004.</span></a>
-
</p>
+
-
<p style="text-align: justify; font-family: Times New Roman; styleName: Normal;">
+
-
    <span style="color: rgb(5, 99, 193); font-family: Times New Roman; text-decoration: underline; styleName: Default Paragraph Font;">http://en.cnki.com.cn/Article_en/CJFDTOTAL-HHYH200701004.htm</span>
+
</p>
</p>
 +
 +
<p style="text-align: justify; font-family: Times New Roman; styleName: Normal;font-size: 50px;">
<p style="text-align: justify; font-family: Times New Roman; styleName: Normal;font-size: 50px;">
     &nbsp;
     &nbsp;
Line 677: Line 688:
</div>
</div>
</div>
</div>
-
 
-
</script>
 
<!--侧边栏自动显示和隐藏的功能-->
<!--侧边栏自动显示和隐藏的功能-->
<script type="text/javascript">
<script type="text/javascript">

Latest revision as of 03:23, 18 October 2014

side_bar

BLACK HOLE

—Suicide by chemotaxis

 

Overview

Thousands of years ago in China, people began to preserve food by curing them which was recorded in Qimin Yaoshu around 540 AD (Figure 1). Curing is any of various food preservation and flavoring processes of foods such as meat, fish and vegetables, by the addition of a combination of salt, nitrates, nitrite or sugar and it is one of the oldest methods of preserving food.[1] Table salt is the primary ingredient used in food curing. Removal of water and addition of salt to meat creates a solute-rich environment where osmotic pressure draws water out of microorganisms, slowing down their growth. Doing this requires a concentration of salt of nearly 20%. It has already been proved that 5% concentration of NaCl could inhibit the growth of E. coli. [2] However, utilizing hyperosmotic pressure to kill E. coli haven’t been fully explored in synthetic biology. This year, our team have put efforts on this topic and developed a system that will contribute to biosafety.

 

Figure 1. The production of curing food.

 

Circuit design

E. coli makes use of the EnvZ/OmpR system to mediate signal transduction in response to environmental osmolarity changes. EnvZ, a histidine kinase, undergoes trans-autophosphorylation, then the high-energy phosphoryl group is subsequently transferred to OmpR, a response regulator. In our system, we involved OmpR-controlled promoter (pOmpR) in (Figure 2). The expression strength of pOmpR depends upon the medium osmolarity. When medium osmolarity is increasing, the EnvZ will phosphorylate more OmpR into phosphorylated OmpR (OmpR-P), resulting in stronger expression strength of pOmpR. In our circuitry design, CheZ is upstream regulated by pOmpR (Figure 2).

 

Figure 2. The schematic of osmotic-taxis design.

 

Characterization of circuit

We use semi-solid medium culture with gradient concentration of sucrose to characterize the device (BBa_K1412010). And we assume that the motile ability is proportional to the moving radius. In the plot (Figure 3), when no sucrose added in, the motile ability is the weakest. The motile ability keeps growing as the concentration of sucrose increases from 0 to 4%. Then the motile ability goes down slightly as the sucrose concentration increased from 4% to 10%, but the ability is still stronger than that at concentration 0. We can draw a conclusion that our device is working as expectation, the motile ability goes down (4%~10%) because of the inhibition from hyperosmotic pressure.

 

 

Figure 3. The plot of moving radius versus sucrose concentration. The four curves were measured after 10 h, 11 h, 12 h and 16.5 h respectively.


Based on the characterization, we spotted hyperosmotic pressure spot and reprogrammed CL-1 spot on semi-solid medium culture as Figure 4 shows. The concentration will decrease with the increase of the distance away from hyperosmotic pressure spot. As osmotic pressure is proportional to the medium concentration. The moving tendency of reprogrammed CL-1 will orient to the hyperosmotic pressure spot. Even at the inhibiting osmotic pressure, the motile ability is still stronger than that without any inducer. So that reprogrammed CL-1 may even swim towards the high-osmotic site and die. The killing mechanism is just like the black hole. When the bacteria move into the “event horizon” where the osmotic pressure reaches to the critical value named the killing osmotic pressure, the bacteria can’t go out of the border and be killed finally.

 

Figure 4. Schematic of killing bacteria by black hole.

 

We draw a horizontal line with 10% sucrose and erect line with water, and spotted cells on the cross (Figure 5). Culturing for 48 hours, we observed that reprogrammed E. coli has significant orientation to high concentration line. As high concentration sucrose generates high hyperosmosis, it has proved that CL-1 has the tendency swimming to high osmotic pressure.

Figure 5. Drawing horizontal line with 10% sucrose and erect line with water. Spotting cells on the cross. Two plates are parallel experiment.

 

Meaning

The sources (such as NaCl and sucrose) to create hyperosmotic pressure are cheap, accessible and environmentally friendly, while antibiotics is expensive and have a bad effect on environmental microbiology because of drug resistance. If our black hole system could be fully developed, it will reduce the barriers to microbiology research especially for the scientists in poor countries.


Want to see more applications: Promoter Yardstick, Aptamer Key-Lock, Oscillation timer.


 

 

References

1. http://en.wikipedia.org/wiki/Curing_(food_preservation)

2. SUN Z, WANG J, LU M, et al. The Inhibitory Function of NaCl to a Few Common Bacteria [J][J]. Sea-Lake Salt and Chemical Industry, 2007, 1: 004.