Team:BGU Israel/Project/Aspiration Shift
From 2014.igem.org
(6 intermediate revisions not shown) | |||
Line 3: | Line 3: | ||
<html> | <html> | ||
- | + | <section> | |
<div style="height:12px"> </div> | <div style="height:12px"> </div> | ||
<div style="margin-bottom:10px"> <img src="https://static.igem.org/mediawiki/2014/9/99/BGU14Aspiration_Shift_Banner.png" alt=""/></div> | <div style="margin-bottom:10px"> <img src="https://static.igem.org/mediawiki/2014/9/99/BGU14Aspiration_Shift_Banner.png" alt=""/></div> | ||
- | <div class="col3" style="height: | + | <div class="col3" style="height: 205px;"> |
<h3 style="border-bottom:dashed;border-color:#000000">Background <a href="#" onclick="goToByScroll('background'); return false;" class="right"></a></h3> | <h3 style="border-bottom:dashed;border-color:#000000">Background <a href="#" onclick="goToByScroll('background'); return false;" class="right"></a></h3> | ||
<br> | <br> | ||
- | <b>The problem: </b>Abnormal | + | <b>The problem: </b>Abnormal accumulation of fatty acids in non-adipose tissues, particularly skeletal muscles and liver |
<br> | <br> | ||
- | <b>Goal: </b>Increase fatty acid oxidation, lipid transport and mitochondrial biogenesis processes | + | <b>Goal: </b>Increase fatty acid oxidation, lipid transport and mitochondrial biogenesis processes, while limiting the state of insulin resistance |
</div> | </div> | ||
- | <div class="col3" style="height: | + | <div class="col3" style="height:205px;"> |
<h3 style="border-bottom:dashed;border-color:#000000">Mechanism <a href="#" onclick="goToByScroll('test'); return false;" class="right"></a></h3> | <h3 style="border-bottom:dashed;border-color:#000000">Mechanism <a href="#" onclick="goToByScroll('test'); return false;" class="right"></a></h3> | ||
<br> | <br> | ||
Line 21: | Line 21: | ||
</div> | </div> | ||
- | <div class="col3" style="height: | + | <div class="col3" style="height:205px; margin-right:0px;"> |
- | <h3 style="border-bottom:dashed;border-color:#000000">Modeling </h3> | + | <h3 style="border-bottom:dashed;border-color:#000000">Modeling |
+ | <a href="https://2014.igem.org/Team:BGU_Israel/Modeling/Aspiration_Shift" class="right"></a></h3> | ||
<br> | <br> | ||
- | + | We designed a mathematical model of our ‘Aspiration Shift’ mechanism, and analyzed the treatment effects on the dynamic system of the genetic circuit. | |
Line 35: | Line 36: | ||
</div> | </div> | ||
<div id="background" style="height:100px"></div> | <div id="background" style="height:100px"></div> | ||
- | <div class="textCont" style="height: | + | <div class="textCont" style="height: 490px;"> |
<h3 style="border-bottom:dashed;border-color:#000000">Background </h3> | <h3 style="border-bottom:dashed;border-color:#000000">Background </h3> | ||
<div class="col2"> | <div class="col2"> | ||
- | + | ||
- | One of the most serious effects of unbalanced fat metabolism | + | <p align="center"><img src="https://static.igem.org/mediawiki/2014/3/31/BGU14_ANI_FATCELL.png" height="240"></p> |
+ | |||
+ | One of the most serious effects of unbalanced fat metabolism is an abnormal accumulation of fatty acids in non-adipose tissues, particularly skeletal muscles and liver. This effect is strongly associated with insulin resistance and obesity. One of the key members, which can reduce abnormal fat accumulation, is peroxisome proliferator-activated receptor γ (PPARγ), a member of the nuclear hormone receptor family of ligand-activated transcription factors. | ||
Line 46: | Line 49: | ||
<div class="col2"> | <div class="col2"> | ||
<br> | <br> | ||
- | In vivo induction of the PPARγ | + | Activation of this receptor increases the expression of genes important to fatty acid oxidation, lipid transport and mitochondrial biogenesis processes(Aharoni-simon, Hann-obercyger, Pen, Madar, & Tirosh, 2011). In vivo induction of the PPARγ co-activator 1α (PGC-1α) showed a high level of fatty acid oxidation capacity. However, overexpression of PGC-1α also induced insulin resistance(Benton, Holloway, Han, & Yoshida, 2010). |
</div> | </div> | ||
</div> | </div> | ||
+ | <div id="test" style="position:relative; bottom:70px"></div> | ||
<div class="textCont" style="height: 570px; margin-bottom: 12px;"> | <div class="textCont" style="height: 570px; margin-bottom: 12px;"> | ||
<h3 style="border-bottom:dashed;border-color:#000000">Mechanism </h3> | <h3 style="border-bottom:dashed;border-color:#000000">Mechanism </h3> | ||
<div class="col2"> | <div class="col2"> | ||
<br> | <br> | ||
- | + | In order to prevent the state of insulin resistance, we designed a self-regulating mechanism, to limit overexpression of PGC-1α, as shown in figure 1. The mechanism is based on the sterol regulatory elements (SRE) to control PGC-1α expression. When cell is found in an anabolic state, i.e., accumulating fatty acids, a transcription factor called SREBP (Sterol Regulatory Element-Binding Proteins) is expressed(Shimomura, Bashmakov, & Horton, 1999). The SREBP binds the sterol regulatory elements and induces the expression of PGC-1α. Thus, to control PGC-1α overexpression, a PPARγ sensitive promoter controlling the expression of a repressor, which binds to an operator downstream the sterol regulatory elements, was added to the system. This way, PGC-1α inhibits its own overexpression and remains in a modest physiological level; a level which does not lead to insulin resistance. | |
- | + | ||
<br> | <br> | ||
Line 69: | Line 72: | ||
<div class="col2"> | <div class="col2"> | ||
+ | <div id="figure1" style="display:block"> | ||
<p align="center"> | <p align="center"> | ||
- | + | <img src="https://static.igem.org/mediawiki/2014/f/f2/BGU14PGC-1-1.png" onclick="change_pic()" width="400" style="border: thin solid; cursor: pointer;" /> | |
- | + | </p> | |
- | + | <p align="center" style="font-size:14px; font-weight:bold; line-height:normal">A construct with PGC1-α under the regulation of sterol regulatory element (SRE), is introduced into the liver cell. </p> | |
- | + | ||
</div> | </div> | ||
+ | <div id="figure2" style="display:none"> | ||
+ | <p align="center"> | ||
+ | <img src="https://static.igem.org/mediawiki/2014/8/8d/BGU14PGC-1-2.png" onclick="change_pic()" width="400" style="border: thin solid; cursor: pointer;" /> | ||
+ | </p> | ||
+ | <p align="center" style="font-size:14px; font-weight:bold; line-height:normal">SREBP expression in the cell induces PGC1-α expression by binding to the sterol regulatory element.</p> | ||
</div> | </div> | ||
- | + | <div id="figure3" style="display:none"> | |
- | + | <p align="center"> | |
- | + | <img src="https://static.igem.org/mediawiki/2014/0/02/BGU14PGC-1-3.png" onclick="change_pic()" width="400" style="border: thin solid; cursor: pointer;" /> | |
- | + | </p> | |
- | + | <p align="center" style="font-size:14px; font-weight:bold; line-height:normal">PGC1-α activates PPAR-γ transcription factor. </p> | |
- | + | ||
- | + | ||
- | + | ||
</div> | </div> | ||
- | + | <div id="figure4" style="display:none"> | |
- | + | <p align="center"> | |
- | + | <img src="https://static.igem.org/mediawiki/2014/7/79/BGU14PGC-1-5.png" onclick="change_pic()" width="400" style="border: thin solid; cursor: pointer;" /> | |
- | + | </p> | |
- | + | <p align="center" style="font-size:14px; font-weight:bold; line-height:normal">PPAR-γ induces the expression of an orthogonal repressor. </p> | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
</div> | </div> | ||
- | + | <div id="figure5" style="display:none"> | |
- | + | <p align="center"> | |
- | + | <img src="https://static.igem.org/mediawiki/2014/b/b8/BGU14PGC-1-6a.png" onclick="change_pic()" width="400" style="border: thin solid; cursor: pointer;" /> | |
- | + | </p> | |
- | + | <p align="center" style="font-size:14px; font-weight:bold; line-height:normal">The repressor binds to an operator downstream the SRE and inhibits PGC1-α synthesis. </p> | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | < | + | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
</div> | </div> | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
</div> | </div> | ||
Line 186: | Line 108: | ||
<div class="textCont" style="height: 380px; margin-bottom: 12px;"> | <div class="textCont" style="height: 380px; margin-bottom: 12px;"> | ||
<h3 style="border-bottom:dashed;border-color:#000000">References </h3> | <h3 style="border-bottom:dashed;border-color:#000000">References </h3> | ||
- | <p>Aharoni-simon, M., Hann-obercyger, M., Pen, S., Madar, Z., & Tirosh, O. (2011). Fatty liver is associated with impaired activity of PPAR g -coactivator 1 a ( PGC1 a ) and mitochondrial biogenesis in mice, <em>91</em>(July),1018–1028. | + | <p>Aharoni-simon, M., Hann-obercyger, M., Pen, S., Madar, Z., & Tirosh, O. (2011). Fatty liver is associated with impaired activity of PPAR g -coactivator 1 a ( PGC1 a ) and mitochondrial biogenesis in mice, <em>91</em>(July), 1018–1028. doi:10.1038/labinvest.2011.55</p> |
- | + | <p><br> | |
- | <p>Benton, C. R., Holloway, G. P., Han, X., & Yoshida, Y. (2010). Increased levels of peroxisome proliferator-activated receptor gamma , coactivator 1 alpha ( PGC-1 α ) improve lipid utilisation , insulin signalling and glucose transport in skeletal muscle of lean and insulin-resistant obese Zucker rats, 2008–2019. | + | Benton, C. R., Holloway, G. P., Han, X., & Yoshida, Y. (2010). Increased levels of peroxisome proliferator-activated receptor gamma , coactivator 1 alpha ( PGC-1 α ) improve lipid utilisation , insulin signalling and glucose transport in skeletal muscle of lean and insulin-resistant obese Zucker rats, 2008–2019. doi:10.1007/s00125-010-1773-1</p> |
- | + | <p><br> | |
- | Shimomura, I., Bashmakov, Y., & Horton, J. D. (1999). Increased Levels of Nuclear SREBP-1c Associated with Fatty Livers in Two Mouse Models of Diabetes Mellitus. <em>Journal of Biological Chemistry</em>, <em>274</em>(42), 30028–30032. | + | Shimomura, I., Bashmakov, Y., & Horton, J. D. (1999). Increased Levels of Nuclear SREBP-1c Associated with Fatty Livers in Two Mouse Models of Diabetes Mellitus. <em>Journal of Biological Chemistry</em>, <em>274</em>(42), 30028–30032. doi:10.1074/jbc.274.42.30028</p> |
- | + | ||
</div> | </div> | ||
</section> | </section> | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
</html> | </html> | ||
{{Team:BGU_Israel/Footer}} | {{Team:BGU_Israel/Footer}} |
Latest revision as of 23:54, 17 October 2014
Background
The problem: Abnormal accumulation of fatty acids in non-adipose tissues, particularly skeletal muscles and liver
Goal: Increase fatty acid oxidation, lipid transport and mitochondrial biogenesis processes, while limiting the state of insulin resistance
Modeling
We designed a mathematical model of our ‘Aspiration Shift’ mechanism, and analyzed the treatment effects on the dynamic system of the genetic circuit.
Background
Activation of this receptor increases the expression of genes important to fatty acid oxidation, lipid transport and mitochondrial biogenesis processes(Aharoni-simon, Hann-obercyger, Pen, Madar, & Tirosh, 2011). In vivo induction of the PPARγ co-activator 1α (PGC-1α) showed a high level of fatty acid oxidation capacity. However, overexpression of PGC-1α also induced insulin resistance(Benton, Holloway, Han, & Yoshida, 2010).
Mechanism
In order to prevent the state of insulin resistance, we designed a self-regulating mechanism, to limit overexpression of PGC-1α, as shown in figure 1. The mechanism is based on the sterol regulatory elements (SRE) to control PGC-1α expression. When cell is found in an anabolic state, i.e., accumulating fatty acids, a transcription factor called SREBP (Sterol Regulatory Element-Binding Proteins) is expressed(Shimomura, Bashmakov, & Horton, 1999). The SREBP binds the sterol regulatory elements and induces the expression of PGC-1α. Thus, to control PGC-1α overexpression, a PPARγ sensitive promoter controlling the expression of a repressor, which binds to an operator downstream the sterol regulatory elements, was added to the system. This way, PGC-1α inhibits its own overexpression and remains in a modest physiological level; a level which does not lead to insulin resistance.
Click on the picture to check out the machanism
A construct with PGC1-α under the regulation of sterol regulatory element (SRE), is introduced into the liver cell.
References
Aharoni-simon, M., Hann-obercyger, M., Pen, S., Madar, Z., & Tirosh, O. (2011). Fatty liver is associated with impaired activity of PPAR g -coactivator 1 a ( PGC1 a ) and mitochondrial biogenesis in mice, 91(July), 1018–1028. doi:10.1038/labinvest.2011.55
Benton, C. R., Holloway, G. P., Han, X., & Yoshida, Y. (2010). Increased levels of peroxisome proliferator-activated receptor gamma , coactivator 1 alpha ( PGC-1 α ) improve lipid utilisation , insulin signalling and glucose transport in skeletal muscle of lean and insulin-resistant obese Zucker rats, 2008–2019. doi:10.1007/s00125-010-1773-1
Shimomura, I., Bashmakov, Y., & Horton, J. D. (1999). Increased Levels of Nuclear SREBP-1c Associated with Fatty Livers in Two Mouse Models of Diabetes Mellitus. Journal of Biological Chemistry, 274(42), 30028–30032. doi:10.1074/jbc.274.42.30028