Team:XMU-China/Project FutureWork
From 2014.igem.org
Fengshao18 (Talk | contribs) |
|||
(15 intermediate revisions not shown) | |||
Line 57: | Line 57: | ||
} | } | ||
#nav_bar_full_01{left: 70px;top:47px;} | #nav_bar_full_01{left: 70px;top:47px;} | ||
- | #nav_bar_full_02{left: 210px;top:47px;} | + | #nav_bar_full_02{left: 210px;top:47px;letter-spacing:-2px;} |
#nav_bar_full_03{left: 360px;top:47px;} | #nav_bar_full_03{left: 360px;top:47px;} | ||
#nav_bar_full_04{left: 525px;top:47px;} | #nav_bar_full_04{left: 525px;top:47px;} | ||
Line 202: | Line 202: | ||
border-left:#135996 5px solid; | border-left:#135996 5px solid; | ||
border-right:#135996 5px solid; | border-right:#135996 5px solid; | ||
- | padding-top: | + | padding-top: 12px; |
padding-bottom:20px; | padding-bottom:20px; | ||
margin-top:70px; | margin-top:70px; | ||
} | } | ||
- | #side_bar ul{list-style: none;border-color:#135996;border-width: | + | #side_bar ul{list-style: none;border-color:#135996;border-width:5px} |
#side_bar a{ | #side_bar a{ | ||
text-decoration:none; | text-decoration:none; | ||
Line 248: | Line 248: | ||
/*Background*/ | /*Background*/ | ||
.Project_title{position:absolute;width:300px;} | .Project_title{position:absolute;width:300px;} | ||
- | #Project_FutureWork{position:relative;top:230px;width:1000px;margin-left:- | + | #Project_FutureWork{position:relative;top:230px;width:1000px;margin-left:-500px;left:50%;} |
#Project_FutureWork_wd{ | #Project_FutureWork_wd{ | ||
background:rgba(0, 0, 0, 0.7) none repeat scroll 0 0 !important;/*FF*/ | background:rgba(0, 0, 0, 0.7) none repeat scroll 0 0 !important;/*FF*/ | ||
Line 255: | Line 255: | ||
padding-left: 30px; | padding-left: 30px; | ||
padding-right: 30px; | padding-right: 30px; | ||
+ | line-height:2; | ||
position:relative; | position:relative; | ||
top:150px; | top:150px; | ||
Line 335: | Line 336: | ||
var sidebar_sub_hover_display = side_bar_hover_target.children(".sidebar_sub").css("display"); | var sidebar_sub_hover_display = side_bar_hover_target.children(".sidebar_sub").css("display"); | ||
if(sidebar_sub_hover_display = "none"){ | if(sidebar_sub_hover_display = "none"){ | ||
- | side_bar_hover_target.animate({width:"275px"},200 | + | side_bar_hover_target.stop().animate({width:"275px"},200); |
- | + | ||
}; | }; | ||
$(".sidebar_main").mouseleave(function(){ | $(".sidebar_main").mouseleave(function(){ | ||
Line 342: | Line 342: | ||
var sidebar_sub_hoveroff_display = side_bar_hoveroff_target.children(".sidebar_sub").css("display"); | var sidebar_sub_hoveroff_display = side_bar_hoveroff_target.children(".sidebar_sub").css("display"); | ||
if(sidebar_sub_hover_display = "block"){ | if(sidebar_sub_hover_display = "block"){ | ||
- | side_bar_hover_target. | + | side_bar_hover_target.stop().animate({width:"155px"},100); |
- | + | ||
}; | }; | ||
}); | }); | ||
Line 350: | Line 349: | ||
$(".navbar_main").mouseenter(function(){ | $(".navbar_main").mouseenter(function(){ | ||
var nav_bar_hover_target = $(this); | var nav_bar_hover_target = $(this); | ||
- | nav_bar_hover_target.children(".navbar_sub").slideDown(); | + | nav_bar_hover_target.children(".navbar_sub").stop().slideDown(); |
$(".navbar_main").mouseleave(function(){ | $(".navbar_main").mouseleave(function(){ | ||
var nav_bar_hoveroff_target = $(this); | var nav_bar_hoveroff_target = $(this); | ||
- | nav_bar_hoveroff_target.children(".navbar_sub").slideUp(); | + | nav_bar_hoveroff_target.children(".navbar_sub").stop().slideUp(); |
}); | }); | ||
}); | }); | ||
Line 467: | Line 466: | ||
<img id="ProjectFutureWork_title" class="Project_title" src="https://static.igem.org/mediawiki/2014/d/d1/Xmu_project_future_work_zwei.png"/> | <img id="ProjectFutureWork_title" class="Project_title" src="https://static.igem.org/mediawiki/2014/d/d1/Xmu_project_future_work_zwei.png"/> | ||
<div id="Project_FutureWork_wd"> | <div id="Project_FutureWork_wd"> | ||
- | <p style=" | + | <br/> |
- | + | <p style="text-align: center; "> | |
+ | <span style="font-size:29px;font-family:arial, helvetica, sans-serif"><strong>FUTURE WORK </strong></span> | ||
</p> | </p> | ||
- | <p | + | <p> |
- | + | <span style="font-family:arial, helvetica, sans-serif"><strong><span style="font-size:21px"></span><br/></strong></span> | |
</p> | </p> | ||
- | <p style=" | + | <p> |
- | + | <span style="font-family:arial, helvetica, sans-serif;font-size:21px"><b>The Role of Pattern Formation</b></span> | |
</p> | </p> | ||
- | <p | + | <p> |
- | <span style="font- | + | <span style="font-family:arial, helvetica, sans-serif;font-size:18px"><br/></span> |
</p> | </p> | ||
- | <p style=" | + | <p> |
- | + | <span style="font-family:arial, helvetica, sans-serif">Pattern formation is of fundamental importance in the coordination of multicellular behavior in a community or a large complex system. In physics and engineering, precisely control of the size of the parts and verification, validation and predictive capability of engineering system performance lay an important theoretical foundation for the application in actual engineering. <sup>[1] </sup>In biology, a vast range of intracellular and intercellular coupling mechanisms lead to the formation of patterns that govern fundamental physiological processes, such as embryogenesis, tumorigenesis and angiogenesis. <sup>[2][3][4] </sup>Also, the ability to engineer synthetic systems that can form spatial patterns is a critical step towards tissue engineering, targeted therapy and fabrication of biomaterials. <sup>[5][6] </sup>As the number of system components grows, it becomes increasingly difficult to coordinate component inputs and outputs to produce the overall desired behavior, which definitely restrict the application of gene therapy , tissue engineering and fabrication of biomaterials.</span> | |
</p> | </p> | ||
- | < | + | <p> |
- | < | + | <span style="font-family:arial, helvetica, sans-serif"><br/></span> |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
</p> | </p> | ||
- | <p | + | <p> |
- | + | <span style="font-family:arial, helvetica, sans-serif;font-size:21px"><b>Perspective and Outlook</b></span> | |
</p> | </p> | ||
- | <p style=" | + | <p> |
- | + | <span style="font-family:arial, helvetica, sans-serif;font-size:18px"><br/></span> | |
</p> | </p> | ||
- | < | + | <p> |
- | < | + | <span style="font-family:arial, helvetica, sans-serif">Based on this motivation and our experimental results of forming quasi-hyperbola at the present stage, we are going to conduct and adjust experiments according to a more accurate modelling, which expect higher accuracy. As to modelling, because nonlinearities and stochasticity arise naturally, tools from the fields of nonlinear dynamics and statistical physics are extremely useful both in the generation of design specifications and for careful comparison between experiment and computational model. <sup>[7] </sup>Experimental and theoretical analyses reveal which kinetic parameters most significantly affect ring development over time. Construction and study of such synthetic multicellular systems can improve our quantitative understanding of naturally occurring developmental processes. Then it will lead us to understand and explain nature better. Based on a more accurate experiment and modeling, we will consider increasing the communication between the cells, introducing quorum-sensing in order to build more complex mathematical shapes, exerting environmental stimulus. Such systems level bioengineering can synergistically target multiple pathways, symptoms or targets, such as multiple cell populations or organs creating the potential for innovative environmental and therapeutic applications. <sup>[8]</sup> Increasing specificity of chemotaxis is another important task of us, as our new-design aptamer, which is specific towards theophylline, and the related experiments are under way.</span> |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
</p> | </p> | ||
- | <p | + | <p> |
- | + | <span style="font-family:arial, helvetica, sans-serif"><br/></span> | |
</p> | </p> | ||
- | <p style="font- | + | <p> |
- | + | <span style="font-family:arial, helvetica, sans-serif"><br/></span> | |
</p> | </p> | ||
- | < | + | <p> |
- | < | + | <span style="font-family:arial, helvetica, sans-serif;font-size:21px"><b>References</b></span> |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
</p> | </p> | ||
- | <p | + | <p> |
- | + | <span style="font-family:arial, helvetica, sans-serif"><br/></span> | |
</p> | </p> | ||
- | <p style="font- | + | <p> |
- | + | <span style="font-family:arial, helvetica, sans-serif"><a href=“http://www.ncbi.nlm.nih.gov/pubmed/1994641”target="_blank">1. Oberkampf W L, Trucano T G, Hirsch C. Verification, validation, and predictive capability in computational engineering and physics[J]. Applied Mechanics Reviews, 2004, 57(5): 345-384.</a> | |
+ | </span> | ||
</p> | </p> | ||
- | <p style=" | + | <p> |
- | + | <span style="font-family:arial, helvetica, sans-serif"><a href=“http://link.springer.com/article/10.1007%2FBF00289234”target="_blank">2. Gierer A, Meinhardt H. A theory of biological pattern formation[J]. Kybernetik, 1972, 12(1): 30-39.</a> | |
+ | </span> | ||
</p> | </p> | ||
- | <p style="font- | + | <p> |
- | + | <span style="font-family:arial, helvetica, sans-serif"><a href=“http://link.springer.com/article/10.1007%2Fs002850000067”target="_blank">3. Chaplain M A J, Ganesh M, Graham I G. Spatio-temporal pattern formation on spherical surfaces: numerical simulation and application to solid tumour growth[J]. Journal of mathematical biology, 2001, 42(5): 387-423.</a> | |
+ | </span> | ||
</p> | </p> | ||
- | <p | + | <p> |
- | <span style="font- | + | <span style="font-family:arial, helvetica, sans-serif"><a href=“http://www.springer.com/engineering/biomedical+engineering/book/978-3-642-30855-0?token=gbgen&wt_mc=Google-_-Book+Search-_-Springer-_-EN&otherVersion=978-3-642-30856-7”target="_blank">4. Boas S E M, Palm M M, Koolwijk P, et al. Mechanical and Chemical Signaling in Angiogenesis[M]. Springer Berlin Heidelberg, 2013:161-183.</a> |
+ | </span> | ||
</p> | </p> | ||
- | <p | + | <p> |
- | + | <span style="font-family:arial, helvetica, sans-serif"><a href=“http://www.ncbi.nlm.nih.gov/pubmed/14561699”target="_blank">5. Abramsson A, Lindblom P, Betsholtz C. Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors[J]. The Journal of clinical investigation, 2003, 112(8): 1142-1151.</a> | |
+ | </span> | ||
</p> | </p> | ||
- | <p style=" | + | <p> |
- | + | <span style="font-family:arial, helvetica, sans-serif"><a href=“http://www.ncbi.nlm.nih.gov/pubmed/14520402/”target="_blank">6. Zhang S. Fabrication of novel biomaterials through molecular self-assembly[J]. Nature biotechnology, 2003, 21(10): 1171-1178.</a> | |
+ | </span> | ||
</p> | </p> | ||
- | <p | + | <p> |
- | <span style=" | + | <span style="font-family:arial, helvetica, sans-serif"><a href=“http://www.ncbi.nlm.nih.gov/pubmed/15858574”target="_blank">7. Basu S, Gerchman Y, Collins C H, et al. A synthetic multicellular system for programmed pattern formation[J]. Nature, 2005, 434(7037): 1130-1134.</a> |
+ | </span> | ||
</p> | </p> | ||
- | <p style=" | + | <p> |
- | + | <span style="font-family:arial, helvetica, sans-serif"><a href=“http://www.ncbi.nlm.nih.gov/pubmed/19461664”target="_blank">8. Purnick P E M, Weiss R. The second wave of synthetic biology: from modules to systems[J]. Nature reviews Molecular cell biology, 2009, 10(6): 410-422</a> | |
+ | </span> | ||
</p> | </p> | ||
- | <p | + | <p> |
- | + | <br/> | |
</p> | </p> | ||
</div> | </div> | ||
</div> | </div> | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
<!--侧边栏自动显示和隐藏的功能--> | <!--侧边栏自动显示和隐藏的功能--> | ||
<script type="text/javascript"> | <script type="text/javascript"> | ||
Line 683: | Line 560: | ||
</body> | </body> | ||
</html> | </html> | ||
+ | {{:Team:XMU-China/UFO}} | ||
+ | {{:Team:XMU-China/footer}} |
Latest revision as of 03:42, 18 October 2014
FUTURE WORK
The Role of Pattern Formation
Pattern formation is of fundamental importance in the coordination of multicellular behavior in a community or a large complex system. In physics and engineering, precisely control of the size of the parts and verification, validation and predictive capability of engineering system performance lay an important theoretical foundation for the application in actual engineering. [1] In biology, a vast range of intracellular and intercellular coupling mechanisms lead to the formation of patterns that govern fundamental physiological processes, such as embryogenesis, tumorigenesis and angiogenesis. [2][3][4] Also, the ability to engineer synthetic systems that can form spatial patterns is a critical step towards tissue engineering, targeted therapy and fabrication of biomaterials. [5][6] As the number of system components grows, it becomes increasingly difficult to coordinate component inputs and outputs to produce the overall desired behavior, which definitely restrict the application of gene therapy , tissue engineering and fabrication of biomaterials.
Perspective and Outlook
Based on this motivation and our experimental results of forming quasi-hyperbola at the present stage, we are going to conduct and adjust experiments according to a more accurate modelling, which expect higher accuracy. As to modelling, because nonlinearities and stochasticity arise naturally, tools from the fields of nonlinear dynamics and statistical physics are extremely useful both in the generation of design specifications and for careful comparison between experiment and computational model. [7] Experimental and theoretical analyses reveal which kinetic parameters most significantly affect ring development over time. Construction and study of such synthetic multicellular systems can improve our quantitative understanding of naturally occurring developmental processes. Then it will lead us to understand and explain nature better. Based on a more accurate experiment and modeling, we will consider increasing the communication between the cells, introducing quorum-sensing in order to build more complex mathematical shapes, exerting environmental stimulus. Such systems level bioengineering can synergistically target multiple pathways, symptoms or targets, such as multiple cell populations or organs creating the potential for innovative environmental and therapeutic applications. [8] Increasing specificity of chemotaxis is another important task of us, as our new-design aptamer, which is specific towards theophylline, and the related experiments are under way.
References