Team:TCU Taiwan/M13Phage
From 2014.igem.org
(14 intermediate revisions not shown) | |||
Line 21: | Line 21: | ||
</script> | </script> | ||
+ | |||
+ | |||
<style type="text/css"> | <style type="text/css"> | ||
Line 137: | Line 139: | ||
<ul> | <ul> | ||
<li><a href="https://2014.igem.org/Team:TCU_Taiwan/Team"><font size="3">Team Members</font></a></li> | <li><a href="https://2014.igem.org/Team:TCU_Taiwan/Team"><font size="3">Team Members</font></a></li> | ||
+ | <li><a href="https://2014.igem.org/Team:TCU_Taiwan/Achievements"><font size="3">Achievements</font></a></li> | ||
<li><a href="https://igem.org/Team.cgi?id=1473" target="_blank"><font size="3">Official Team Profile</font></a></li> | <li><a href="https://igem.org/Team.cgi?id=1473" target="_blank"><font size="3">Official Team Profile</font></a></li> | ||
<li><a href="https://2014.igem.org/Team:TCU_Taiwan/Contact"><font size="3">Contact</font></a></li> | <li><a href="https://2014.igem.org/Team:TCU_Taiwan/Contact"><font size="3">Contact</font></a></li> | ||
Line 209: | Line 212: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
- | <td style="background-color:#FFF2B5" height="20"><font face="Trebuchet MS" size="6" color="#A66B38">M13 Phage | + | <td style="background-color:#FFF2B5" height="20"><font face="Trebuchet MS" size="6" color="#A66B38">M13 Phage Mechanism</font></td> |
</tr> | </tr> | ||
+ | |||
<tr> | <tr> | ||
- | <td | + | <td height="20"> </td> |
- | + | </tr> | |
- | + | <tr> | |
- | + | <td><font size="3" face="Verdana" color="#333"><p>In our project, the CRISPR system is been transported by phage. So how can phage recognized which DNA it should package and spread? That is accessed by phagemid and helper phage.</p></font></td> | |
- | + | </tr> | |
- | + | <tr> | |
- | + | <td height="15"> </td> | |
- | + | </tr> | |
+ | <tr> | ||
+ | <td><table width="60%" border="0" cellspacing="0" cellpadding="0" align="center"> | ||
<tr> | <tr> | ||
- | <td><img src="https://static.igem.org/mediawiki/2014/ | + | <td><img src="https://static.igem.org/mediawiki/2014/b/b8/TCU_M13-1.jpg" width="100%"/></td> |
</tr> | </tr> | ||
<tr> | <tr> | ||
Line 227: | Line 233: | ||
</tr> | </tr> | ||
</table></td> | </table></td> | ||
- | + | </tr> | |
- | + | <tr> | |
- | + | <td height="15"> </td> | |
+ | </tr> | ||
+ | <tr> | ||
+ | <td><font size="3" face="Verdana" color="#333"><p>Take M13KO7 helper phage and phagemid pBluescript II SK(-) as example, as we use them in our experiment. M13KO7 helper phage has complete coat proteins and a complete genome just like normal M13 phage. But its f1 ori has been inserted by a p15A ori and a kanamycin resistance gene. While in pBluescript, its structure is like a normal plasmid but carries two replication origin: a high efficient PUC ori for itself, and an additional normal f1 ori. <br /> | ||
+ | In other phagemid and helper phage pairs, situations are same: helper phage’s replication origin is mutated while phagemid contains an additional replication origin for this helper phage.</p></font></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td height="50"> </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><table width="100%" border="0" cellspacing="0" cellpadding="0"> | ||
+ | <tr> | ||
+ | <td width="50%"> | ||
+ | <div style="width: 520px; padding: 0em" align="center"> | ||
+ | <img alt=" change width 586 to 520 & 745 " style="float: left; position: relative; z-index: 2" src="https://static.igem.org/mediawiki/2014/2/28/TCU_M13-2.jpg" onmouseover="this.style.width='745px'" onmouseout="this.style.width='520px'" width="100%"><font size="3" face="Verdana"><strong>Fig.2</strong></font> | ||
+ | </div> | ||
+ | </td> | ||
+ | <td width="10"> </td> | ||
+ | <td valign="top"><font size="3" face="Verdana" color="#333"><p>When a normal M13 phage infect <em>E.coli</em><em> with </em>F plasmid(strain JM101 in our experiment), it will use F pilus to put its genome into cytosol. Then this single strand genome will use host’s polymerase to make itself a double strand structure and stay in cytosol like a plasmid. <br /></p> | ||
+ | <p>M13 genome contains major 9 genes, we call each gene’s product as gp1, gp2, etc. When it wants to produce progeny phage, gp2 will recognize f1 ori and make a single strand break on genome. Then gp5 will form dimer structure and start to package this single strand DNA from package signal on f1 ori, this will help stabilize single strand genome in cytosol. After that, progeny phage will be released from host cell and be coated by gp3, gp6, gp7, gp8, gp9.</p></font></td> | ||
</tr> | </tr> | ||
</table></td> | </table></td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
- | <td> </td> | + | <td height="50"> </td> |
</tr> | </tr> | ||
<tr> | <tr> | ||
- | <td> </td> | + | <td><table width="100%" border="0" cellspacing="0" cellpadding="0"> |
+ | <tr> | ||
+ | <td valign="top"> | ||
+ | <p><font color="#333" size="3" face="Verdana">When it comes to M13KO7 helper phage, it still can successfully infect <em>E.coli with </em>F plasmid and make its genome stable in cytosol by host’s polymerase. But because its f1 ori has been mutated, so gp2 cannot make a nick on M13KO7's genome. This means, helper phage cannot produce progeny phage itself.<br /></font></p> | ||
+ | <p><font color="#333" size="3" face="Verdana">However, if this <em>E.coli </em>has been transformed with a pBluescript II SK(-), gp2 will recognize intergenic region and make a nick on this plasmid. And then gp5 dimers will package the single strand of pBluescript because they believe this is their “genome”! In this situation, host cell will release phages but these phages do not contains their genome, they will carry phagemid instead. So they will not be able to make next generation after infection, so we call them “phagemid-carrying phage”.</font></p></td> | ||
+ | <td width="10"> </td> | ||
+ | <td width="50%"> | ||
+ | <div style="width: 520px; padding: 0em" align="center"> | ||
+ | <img alt=" change width 586 to 520 & 745 " style="float: right; position: relative; z-index: 2" src="https://static.igem.org/mediawiki/2014/9/9c/TCU_M13-3.jpg" onmouseover="this.style.width='745px'" onmouseout="this.style.width='520px'" width="100%"><font size="3" face="Verdana"><strong>Fig.3</strong></font> | ||
+ | </div></td> | ||
+ | </tr> | ||
+ | </table></td> | ||
</tr> | </tr> | ||
<tr> | <tr> |
Latest revision as of 21:06, 17 October 2014
M13 Phage |
|
|
M13 Phage Mechanism | |||
In our project, the CRISPR system is been transported by phage. So how can phage recognized which DNA it should package and spread? That is accessed by phagemid and helper phage. |
|||
|
|||
Take M13KO7 helper phage and phagemid pBluescript II SK(-) as example, as we use them in our experiment. M13KO7 helper phage has complete coat proteins and a complete genome just like normal M13 phage. But its f1 ori has been inserted by a p15A ori and a kanamycin resistance gene. While in pBluescript, its structure is like a normal plasmid but carries two replication origin: a high efficient PUC ori for itself, and an additional normal f1 ori. |
|||
|
|||
|
|||
^
|
Lost the way? Use it to help you if you're lost. |