Team:NTU Taida/Circuit1

From 2014.igem.org

(Difference between revisions)
 
(6 intermediate revisions not shown)
Line 1: Line 1:
{{:Team:NTU_Taida/template/header}}
{{:Team:NTU_Taida/template/header}}
{{:Team:NTU_Taida/template/css/bootstrap}}
{{:Team:NTU_Taida/template/css/bootstrap}}
-
 
<html lang="en">
<html lang="en">
Line 11: Line 10:
     <!-- Bootstrap -->
     <!-- Bootstrap -->
-
 
+
    <link href="css/bootstrap.css" rel="stylesheet">
     <link href='http://fonts.googleapis.com/css?family=Snippet|Cabin+Sketch:400,700|Flamenco|Shadows+Into+Light|Shadows+Into+Light+Two|Julius+Sans+One|Kranky|Megrim&subset=latin,latin-ext' rel='stylesheet' type='text/css'>
     <link href='http://fonts.googleapis.com/css?family=Snippet|Cabin+Sketch:400,700|Flamenco|Shadows+Into+Light|Shadows+Into+Light+Two|Julius+Sans+One|Kranky|Megrim&subset=latin,latin-ext' rel='stylesheet' type='text/css'>
     <!-- HTML5 Shim and Respond.js IE8 support of HTML5 elements and media queries -->
     <!-- HTML5 Shim and Respond.js IE8 support of HTML5 elements and media queries -->
Line 20: Line 19:
     <![endif]-->
     <![endif]-->
   </head>
   </head>
-
   <body>
+
   <body id="top">
-
     <nav class="navbar navbar-default navbar-fixed-top" role="navigation">
+
     <nav class="navbar navbar-default navbar-fixed-top" role="navigation" >
   <div class="container-fluid">
   <div class="container-fluid">
     <!-- Brand and toggle get grouped for better mobile display -->
     <!-- Brand and toggle get grouped for better mobile display -->
Line 31: Line 30:
         <span class="icon-bar"></span>
         <span class="icon-bar"></span>
       </button>
       </button>
-
       <a href="https://2014.igem.org/Team:NTU_Taida"><img id="logo" height="50" src="https://static.igem.org/mediawiki/2014/1/19/NTU_Taida_logo.jpg"></a>
+
       <a href="https://2014.igem.org/Team:NTU_Taida"><img id="logo" width="70px" src="https://static.igem.org/mediawiki/2014/1/19/NTU_Taida_logo.jpg"></a>
     </div>
     </div>
Line 37: Line 36:
     <div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">
     <div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">
       <ul class="nav navbar-nav">
       <ul class="nav navbar-nav">
-
         <li class="active"><a href="TEAM.html">TEAM</a></li>
+
         <li class="active"><a href="TEAM">TEAM</a></li>
      
      
Line 43: Line 42:
           <a href="#" class="dropdown-toggle" data-toggle="dropdown">PROJECT<span class="caret"></span></a>
           <a href="#" class="dropdown-toggle" data-toggle="dropdown">PROJECT<span class="caret"></span></a>
           <ul class="dropdown-menu" role="menu">
           <ul class="dropdown-menu" role="menu">
-
             <li><a href="problem.html">Problem (introduction)</a></li>
+
             <li><a href="problem">Problem (introduction)</a></li>
-
             <li><a href="PROJECT.html">Overview Mind Map</a></li>
+
             <li><a href="PROJECT">Overview Mind Map</a></li>
              
              
             <li class="divider"></li>
             <li class="divider"></li>
-
             <li><a href="Circuit1.html">Fad System</a></li>
+
             <li><a href="Circuit1">Fad System</a></li>
             <li class="divider"></li>
             <li class="divider"></li>
-
             <li><a href="Circuit2.html">Skin Whitening --- PKEK</a></li>
+
             <li><a href="Circuit2">Skin Whitening --- PKEK</a></li>
             <li class="divider"></li>
             <li class="divider"></li>
-
             <li><a href="Circuit3.html"> Corneum decomposition --- Keratinase</a></li>
+
             <li><a href="Circuit3"> Corneum decomposition --- Keratinase</a></li>
             <li class="divider"></li>
             <li class="divider"></li>
-
             <li><a href="Circuit4.html">Fragrance</a></li>
+
             <li><a href="Circuit4">Fragrance</a></li>
           </ul>
           </ul>
         </li>
         </li>
Line 62: Line 61:
           <ul class="dropdown-menu" role="menu">
           <ul class="dropdown-menu" role="menu">
            
            
-
             <li><a href="M1.html">Our Simulation Progress</a></li>
+
             <li><a href="M1">Our Simulation Progress</a></li>
             <li class="divider"></li>
             <li class="divider"></li>
-
             <li><a href="M2.html">Model 1</a></li>
+
             <li><a href="M2">Model 1</a></li>
            
            
-
             <li><a href="M3.html">Model 2</a></li>
+
             <li><a href="M3">Model 2</a></li>
              
              
-
             <li><a href="M4.html">Model 3</a></li>
+
             <li><a href="M4">Model 3</a></li>
             <li class="divider"></li>
             <li class="divider"></li>
-
             <li><a href="M5.html">Curve fitting</a></li>
+
             <li><a href="M5">Curve fitting</a></li>
             <li class="divider"></li>
             <li class="divider"></li>
-
             <li><a href="M6.html">Background knowledge</a></li>
+
             <li><a href="M6">Background knowledge</a></li>
             <li class="divider"></li>
             <li class="divider"></li>
-
             <li><a href="M7.html">Reference</a></li>
+
             <li><a href="M7">Reference</a></li>
           </ul>
           </ul>
         </li>
         </li>
        
        
-
      <li class="dropdown">
+
<li class="dropdown">
-
           <a href="#" class="dropdown-toggle" data-toggle="dropdown">SAFETY<span class="caret"></span></a>
+
           <a href="SAFETY" >SAFETY</a>
-
          <ul class="dropdown-menu" role="menu">
+
        </li>
-
           
+
-
            <li><a href="SAFETY.html">What we done</a></li>
+
-
            <li class="divider"></li>
+
-
            <li><a href="SAFETY%20what%20else%20can%20we%20do.html">What else can we do</a></li>
+
-
          </ul>
+
-
        </li>
+
        
        
   <li class="dropdown">
   <li class="dropdown">
-
           <a href="PARTS.html" >PARTS</a>
+
           <a href="PARTS" >PARTS</a>
         </li>
         </li>
             <li class="dropdown">
             <li class="dropdown">
-
           <a href="LOGBOOK.html" >LOGBOOK</a>
+
           <a href="LOGBOOK" >LOGBOOK</a>
         </li>
         </li>
          
          
         <li class="dropdown">
         <li class="dropdown">
-
           <a href="HP1.html" >HUMAN PRACTICE</a>
+
           <a href="HP1" >HUMAN PRACTICE</a>
         </li>
         </li>
 +
       
 +
        <li class="dropdown">
 +
          <a href="#" class="dropdown-toggle" data-toggle="dropdown">SPONSORS<span class="caret"></span></a>
 +
          <ul class="dropdown-menu" role="menu">
 +
            <li><a href="Apex">ApexBio Biotech</a></li>
 +
            <li><a href="Lih">LihPao Life Science</a></li>
 +
          </ul>
 +
        </li>
 +
     
          
          
         <li class="active">
         <li class="active">
Line 107: Line 109:
         MAIN PAGE 2014
         MAIN PAGE 2014
         </a> </li>
         </a> </li>
 +
         
 +
          <li class="active">
 +
        <a href="https://www.facebook.com/NationalTaiwanUniversityiGEM?fref=ts"><img src="https://static.igem.org/mediawiki/2014/5/5a/NTU_Taida_Facebook.jpg" width=100px;>
 +
        </a></li>
         </ul>
         </ul>
        
        
Line 145: Line 151:
     <div id="menuwrapper">
     <div id="menuwrapper">
       <div id="menu">
       <div id="menu">
-
  <a href="Circuit1" class="menuitem"><img src="https://static.igem.org/mediawiki/2014/e/ea/NTU_Taida_FAD_icon.jpg"></a>
+
 
-
        <a href="Circuit2" class="menuitem"><img src="https://static.igem.org/mediawiki/2014/1/1e/NTU_Taida_PKEK_icon.jpg"></a>
+
-
        <a href="Circuit3" class="menuitem"><img src="https://static.igem.org/mediawiki/2014/3/39/NTU_Taida_Keratinase_icon.jpg"></a>
+
-
        <a href="Circuit4" class="menuitem"><img src="https://static.igem.org/mediawiki/2014/d/d4/NTU_Taida_fragrance_icon.jpg"></a>
+
       </div>
       </div>
      
      
Line 155: Line 158:
       <div class="boxE">
       <div class="boxE">
-
        <a href="#" > <img src="images/FAD%20system.jpg" height="520px" align="center"> </a>
+
          <img src="https://static.igem.org/mediawiki/2014/4/49/NTU_Taida_FAD_system.jpg" height="520px" align="center" >  
       </div>
       </div>
   
   
-
<div class="container"  style="width:1200px;line-height:3em;padding:200px;padding-top:100px;padding-right:100px" float="left" >
+
<div class="container"  style="width:1200px;line-height:3em;padding:200px;padding-top:100px;padding-right:100px" float="left" id="inspiration">
<h2 style="background-color:#eeeeee"><center>Fad System</center></h2>
<h2 style="background-color:#eeeeee"><center>Fad System</center></h2>
   </p>
   </p>
   </p>
   </p>
<li class="boxF">
<li class="boxF">
-
  <h4 style="color:#00A0E9">Inspiration :</p></h4>
+
  <h4 style="color:#00A0E9" >Inspiration :</p></h4>
-
   <h5 style="line-height:1.4em;font-size:110%;"><b>A locus (fadL) that is required for the utilization of long-chain fatty acids has been mapped and partially characterized in an Escherichia coli mutant  . We have shown that the product of the fadL gene is localized in the outer membrane, forms a specific channel for the uptake of long-chain fatty acids. Derivatives of this mutant that can grow on decanoate(termed fadR) are capable to transport long-chain fatty acids into the cell by fadL and fadR sequence.</b></h5>
+
   <h5 style="line-height:1.4em;font-size:110%;">
 +
  <p id="how it works"><strong>A locus (fadL)</strong> that is required for the utilization of long-chain fatty acids(LCFA) has been mapped and partially characterized in an <i>Escherichia coli</i> mutant  . We have shown that the product of the fadL gene is localized in the outer membrane, forms a specific channel for the uptake of long-chain fatty acids. Derivatives of this mutant that can grow on decanoate(termed fadR) are capable to transport long-chain fatty acids into the cell by fadL and fadR sequence.</p></h5>
</li>
</li>
   </p>
   </p>
Line 171: Line 175:
<li ><h4 style="color:#00A0E9">How it works :</p></h4>
<li ><h4 style="color:#00A0E9">How it works :</p></h4>
-
<center><img src="images/g2.jpg"></center>
+
 
<div class="boxG">
<div class="boxG">
-
  <h5 style="line-height:1.4em;font-size:110%;">Through several assay studying, we conclude that the key component for E-coli to absorb LCFA were FadL and FadR. After absorption, E-coli will breaks down the fatty acids into acyl-coAs. Acyl-coAs bind to the FadR repressor and free the pfadBA promoter, resulting in the transcription of gene sequences below.</h5>
+
  <h5 style="line-height:1.4em;font-size:110%;">
 +
1 LCFA
 +
passes the outer membrane through FadL.</p>
 +
2 LCFA adsorbs to the periplasmic
 +
side of the inner membrane.</p>
 +
3 LCFA moves to the cytosolic side
 +
of the innermembrane by flip-flopmechanism.</p>
 +
4 FadD abstracts LCFA to
 +
synthesize LCFA-CoA which can derepress the fad regulon, including
 +
fadL, fadD, and fadE. It is also used in lipid biosynthesis.</p>
 +
5 Dehydrogenation
 +
by FadE produces fatty enoyl-CoA, the first compound in the β
 +
oxidation pathway</p>
 +
<center><img src="https://static.igem.org/mediawiki/2014/0/04/NTU_Taida_G2.jpg"></center>
 +
<p id="background"><strong>Through</strong> several assay studying, we conclude that the key component for <i>E-coli</i> to absorb LCFA were FadL and FadR. After absorption, <i>E-coli</i>will breaks down the fatty acids into acyl-coAs. Acyl-coAs bind to the FadR repressor and free the pfadBA promoter, resulting in the transcription of gene sequences below.</p></h5>
</div>
</div>
   </p>
   </p>
Line 181: Line 199:
  <h4 style="color:#00A0E9">Background Knowledge :</p></h4>
  <h4 style="color:#00A0E9">Background Knowledge :</p></h4>
  <h5 style="line-height:1.4em;font-size:110%;">
  <h5 style="line-height:1.4em;font-size:110%;">
-
     Exogenous fatty acids and its acid derivatives influence a wide variety of cellular processes. The processes governing the transport of fatty acids from the extracellular milieu across the membrane are distinct from those underpinning the transport of hydrophilic substrates such as sugars and amino acids. Investigations into fatty acid transport must address three central issues, which are unique to this process: </p>(i) the low solubility of fatty acids under aqueous conditions; </p>(ii) the physical and chemical parameters of fatty acids, which allows them to readily partition into a lipid bilayer; and</p> (iii) the identification of membrane-bound and membrane-associated proteins, which are likely to play pivotal roles in this process.</p>In addition, diversity of lipid and protein species in various biological membranes must be a central consideration for investigations directed at defining the biochemical mechanisms governing fatty acid transport .</p>
+
     <strong>Exogenous fatty acids</strong> and its acid derivatives influence a wide variety of cellular processes. The processes governing the transport of fatty acids from the extracellular milieu across the membrane are distinct from those underpinning the transport of hydrophilic substrates such as sugars and amino acids. Investigations into fatty acid transport must address three central issues, which are unique to this process: </p>(i) the low solubility of fatty acids under aqueous conditions; </p>(ii) the physical and chemical parameters of fatty acids, which allows them to readily partition into a lipid bilayer; and</p> (iii) the identification of membrane-bound and membrane-associated proteins, which are likely to play pivotal roles in this process.</p>In addition, diversity of lipid and protein species in various biological membranes must be a central consideration for investigations directed at defining the biochemical mechanisms governing fatty acid transport .</p>
-
     <b>Fatty Acid Transport Defined</b></p>
+
     <b>Fatty Acid Transport Defined:</b>
Given that fatty acids bind to and flip between the two membrane leaflets, it is imperative to define the fatty acid transport process. For the purposes of discussion, fatty acid transport is defined as the net movement of the fatty acid from the outside of the cell to the inside of the cell — or, more simply stated, the movement of the fatty acid from the extracellular space into the intracellular cytosolic compartment.</p>
Given that fatty acids bind to and flip between the two membrane leaflets, it is imperative to define the fatty acid transport process. For the purposes of discussion, fatty acid transport is defined as the net movement of the fatty acid from the outside of the cell to the inside of the cell — or, more simply stated, the movement of the fatty acid from the extracellular space into the intracellular cytosolic compartment.</p>
The focus of this review is the net movement of exogenous fatty acids across the membrane, with a specific focus on the role of fatty acid transport proteins and fatty acyl coenzyme A (CoA) synthetases. There is considerable evidence showing that the fatty acid transport proteins FadL (from gram-negative bacteria) and Fat1p (the yeast orthologue of mammalian fatty acid transport proteins [FATP]) function in concert with FACS as components of a fatty acid transport apparatus, which results in concomitant transport and activation to CoA thioesters by a process described as vectorial esterification.
The focus of this review is the net movement of exogenous fatty acids across the membrane, with a specific focus on the role of fatty acid transport proteins and fatty acyl coenzyme A (CoA) synthetases. There is considerable evidence showing that the fatty acid transport proteins FadL (from gram-negative bacteria) and Fat1p (the yeast orthologue of mammalian fatty acid transport proteins [FATP]) function in concert with FACS as components of a fatty acid transport apparatus, which results in concomitant transport and activation to CoA thioesters by a process described as vectorial esterification.
Line 191: Line 209:
   </p>
   </p>
<li class="boxG">
<li class="boxG">
-
  <h4 style="color:#00A0E9">Reference :</p></h4>
+
  <h4 style="color:#00A0E9" id="reference">Reference :</p></h4>
  <h5 style="line-height:1.4em;font-size:110%;">  Nunn, William D., and Robert W. Simons. "Transport of long-chain fatty acids by Escherichia coli: mapping and characterization of mutants in the fadL gene." Proceedings of the National Academy of Sciences 75.7 (1978): 3377-3381.
  <h5 style="line-height:1.4em;font-size:110%;">  Nunn, William D., and Robert W. Simons. "Transport of long-chain fatty acids by Escherichia coli: mapping and characterization of mutants in the fadL gene." Proceedings of the National Academy of Sciences 75.7 (1978): 3377-3381.
   Black, Paul N. "Primary sequence of the Escherichia coli fadL gene encoding an outer membrane protein required for long-chain fatty acid transport." Journal of bacteriology 173.2 (1991): 435-442.</p>
   Black, Paul N. "Primary sequence of the Escherichia coli fadL gene encoding an outer membrane protein required for long-chain fatty acid transport." Journal of bacteriology 173.2 (1991): 435-442.</p>
Line 199: Line 217:
</h5>
</h5>
 +
</li>
 +
 +
<li class="boxG">
 +
<h4 style="color:#00A0E9"><a href="#top">Top</a></p></h4>
</li>
</li>
</div>
</div>

Latest revision as of 01:48, 18 October 2014

NTU-Taida

Fad System

  • Inspiration :

    A locus (fadL) that is required for the utilization of long-chain fatty acids(LCFA) has been mapped and partially characterized in an Escherichia coli mutant . We have shown that the product of the fadL gene is localized in the outer membrane, forms a specific channel for the uptake of long-chain fatty acids. Derivatives of this mutant that can grow on decanoate(termed fadR) are capable to transport long-chain fatty acids into the cell by fadL and fadR sequence.

  • How it works :

    1 LCFA passes the outer membrane through FadL.

    2 LCFA adsorbs to the periplasmic side of the inner membrane.

    3 LCFA moves to the cytosolic side of the innermembrane by flip-flopmechanism.

    4 FadD abstracts LCFA to synthesize LCFA-CoA which can derepress the fad regulon, including fadL, fadD, and fadE. It is also used in lipid biosynthesis.

    5 Dehydrogenation by FadE produces fatty enoyl-CoA, the first compound in the β oxidation pathway

    Through several assay studying, we conclude that the key component for E-coli to absorb LCFA were FadL and FadR. After absorption, E-coliwill breaks down the fatty acids into acyl-coAs. Acyl-coAs bind to the FadR repressor and free the pfadBA promoter, resulting in the transcription of gene sequences below.

  • Background Knowledge :

    Exogenous fatty acids and its acid derivatives influence a wide variety of cellular processes. The processes governing the transport of fatty acids from the extracellular milieu across the membrane are distinct from those underpinning the transport of hydrophilic substrates such as sugars and amino acids. Investigations into fatty acid transport must address three central issues, which are unique to this process:

    (i) the low solubility of fatty acids under aqueous conditions;

    (ii) the physical and chemical parameters of fatty acids, which allows them to readily partition into a lipid bilayer; and

    (iii) the identification of membrane-bound and membrane-associated proteins, which are likely to play pivotal roles in this process.

    In addition, diversity of lipid and protein species in various biological membranes must be a central consideration for investigations directed at defining the biochemical mechanisms governing fatty acid transport .

    Fatty Acid Transport Defined: Given that fatty acids bind to and flip between the two membrane leaflets, it is imperative to define the fatty acid transport process. For the purposes of discussion, fatty acid transport is defined as the net movement of the fatty acid from the outside of the cell to the inside of the cell — or, more simply stated, the movement of the fatty acid from the extracellular space into the intracellular cytosolic compartment.

    The focus of this review is the net movement of exogenous fatty acids across the membrane, with a specific focus on the role of fatty acid transport proteins and fatty acyl coenzyme A (CoA) synthetases. There is considerable evidence showing that the fatty acid transport proteins FadL (from gram-negative bacteria) and Fat1p (the yeast orthologue of mammalian fatty acid transport proteins [FATP]) function in concert with FACS as components of a fatty acid transport apparatus, which results in concomitant transport and activation to CoA thioesters by a process described as vectorial esterification.
  • Reference :

    Nunn, William D., and Robert W. Simons. "Transport of long-chain fatty acids by Escherichia coli: mapping and characterization of mutants in the fadL gene." Proceedings of the National Academy of Sciences 75.7 (1978): 3377-3381. Black, Paul N. "Primary sequence of the Escherichia coli fadL gene encoding an outer membrane protein required for long-chain fatty acid transport." Journal of bacteriology 173.2 (1991): 435-442.

    Maloy, S. R., et al. "Transport of long and medium chain fatty acids by Escherichia coli K12." Journal of Biological Chemistry 256.8 (1981): 3735-3742. APA Black, Paul N., and Concetta C. DiRusso. "Transmembrane movement of exogenous long-chain fatty acids: proteins, enzymes, and vectorial esterification." Microbiology and Molecular Biology Reviews 67.3 (2003): 454-472.
  • Top