Team:ITESM-CEM/EnzymaticKinectics
From 2014.igem.org
(2 intermediate revisions not shown) | |||
Line 95: | Line 95: | ||
The following system of differential equations was generated, where each compound has a particular abbreviation (7KC for 7-ketocholesterol, 7βOHC for 7-βOH-Cholesterol, and Ch for Cholesterol: </p><br> | The following system of differential equations was generated, where each compound has a particular abbreviation (7KC for 7-ketocholesterol, 7βOHC for 7-βOH-Cholesterol, and Ch for Cholesterol: </p><br> | ||
- | <p class="centeredImage"><img src="https://static.igem.org/mediawiki/2014/f/fa/Formula_2_editado-1.jpg" hspace="20"></p><br> | + | <p class="centeredImage"><img src="https://static.igem.org/mediawiki/2014/f/fa/Formula_2_editado-1.jpg" height="312" width="640" hspace="20"></p><br> |
<p style="text-align: justify; text-justify: inter-word;"> This means that the concentration of 7-ketocholesterol is always described by the Michaelis-Menten reaction rate of the first enzyme, which tends to degrade it (a zero term stands for the non-existing 7-ketocholesterol synthesis); the concentration of 7- βOH-cholesterol is described by both the first and the second enzyme Micahelis-Menten kinetics, where the first one models its synthesis and the second one its degradation. Finally, cholesterol concentration is zero in the first stage of the reaction (when 7- βOH-cholesterol has not been metabolized yet), and is modelled by the second enzyme kinetics in the second reaction stage; here, it is generated at a reaction rate of the same magnitude and opposite sign of that of 7-βOH-Cholesterol degradation (a zero term stands for the non-existing cholesterol metabolism).<br> | <p style="text-align: justify; text-justify: inter-word;"> This means that the concentration of 7-ketocholesterol is always described by the Michaelis-Menten reaction rate of the first enzyme, which tends to degrade it (a zero term stands for the non-existing 7-ketocholesterol synthesis); the concentration of 7- βOH-cholesterol is described by both the first and the second enzyme Micahelis-Menten kinetics, where the first one models its synthesis and the second one its degradation. Finally, cholesterol concentration is zero in the first stage of the reaction (when 7- βOH-cholesterol has not been metabolized yet), and is modelled by the second enzyme kinetics in the second reaction stage; here, it is generated at a reaction rate of the same magnitude and opposite sign of that of 7-βOH-Cholesterol degradation (a zero term stands for the non-existing cholesterol metabolism).<br> | ||
Line 108: | Line 108: | ||
As for the first reaction, it is well known that the problem that ultimately enhances the development of atherosclerotic plaques is the inability of human cells to metabolize 7-ketocholesterol. This is due to a lack of a specific enzyme that performs this task; which ultimately causes this action to be performed by non-specific proteins which most probably have quite high Km values, which cause a really low affinity of the enzymes when acting upon this substrate. This is why figure 2 presents 5 plots with decreasing values of Michaelis constants for the first reaction (Km1). Here the maximum rate of reaction was fixed at a value slightly lower than that for the second one (fixed to 1000). </p> | As for the first reaction, it is well known that the problem that ultimately enhances the development of atherosclerotic plaques is the inability of human cells to metabolize 7-ketocholesterol. This is due to a lack of a specific enzyme that performs this task; which ultimately causes this action to be performed by non-specific proteins which most probably have quite high Km values, which cause a really low affinity of the enzymes when acting upon this substrate. This is why figure 2 presents 5 plots with decreasing values of Michaelis constants for the first reaction (Km1). Here the maximum rate of reaction was fixed at a value slightly lower than that for the second one (fixed to 1000). </p> | ||
- | <p class="centeredImage"><img src="https://static.igem.org/mediawiki/2014/2/2e/Mathematical_Model-3.jpg" height=" | + | <p class="centeredImage"><img src="https://static.igem.org/mediawiki/2014/2/2e/Mathematical_Model-3.jpg" height="387" width="534" hspace="20" BORDER=10></p> |
- | <p><pie><b>Figure 2.-</b> Plots generated by the numerical solution of the differential model of enzyme kinetics using Runge-Kutta’s fourth order method. Decreasing values for Michaelis constant for the first reaction are shown in each plot.</pie></p> | + | <p><pie><b>Figure 2.-</b> Plots generated by the numerical solution of the differential model of enzyme kinetics using Runge-Kutta’s fourth order method. Decreasing values for Michaelis constant for the first reaction are shown in each plot.</pie></p><br> |
<p style="text-align: justify; text-justify: inter-word;"> The first plot might accurately represent the situation inside human macrophages, where 7-ketocholesterol cannot be degraded at an appropriate rate, and gradually accumulates. If we further consider that this model does not include the endogenous synthesis and the uptake of 7-ketocholesterol, we can easily see why this molecule’s concentration rapidly builds up in the bloodstream. However, as Km values for this reaction diminish, the plots tend to represent more efficient metabolic pathways: we expect our synthetic route, based of Rhodococcus jostii’s sterol metabolism, to be modelled by one of the last two plots in the figure; here, 7-ketocholesterol is degraded faster, and regular cholesterol, which can readily be metabolized by human enzymes, is produced.</p> | <p style="text-align: justify; text-justify: inter-word;"> The first plot might accurately represent the situation inside human macrophages, where 7-ketocholesterol cannot be degraded at an appropriate rate, and gradually accumulates. If we further consider that this model does not include the endogenous synthesis and the uptake of 7-ketocholesterol, we can easily see why this molecule’s concentration rapidly builds up in the bloodstream. However, as Km values for this reaction diminish, the plots tend to represent more efficient metabolic pathways: we expect our synthetic route, based of Rhodococcus jostii’s sterol metabolism, to be modelled by one of the last two plots in the figure; here, 7-ketocholesterol is degraded faster, and regular cholesterol, which can readily be metabolized by human enzymes, is produced.</p> |
Latest revision as of 06:01, 14 October 2014
ITESM-CEM | Enzy7-K me |
|
||||
Modeling
|
|||||
| |||||
|
|||||
|