Team:HIT-Harbin/Design

From 2014.igem.org

(Difference between revisions)
 
(16 intermediate revisions not shown)
Line 12: Line 12:
   <div id="nav">
   <div id="nav">
     <!--project -->
     <!--project -->
-
     <div id="project" class="nav1" onmouseover="displaySubMenu(this)" onmouseout="hideSubMenu(this)">                                    <a href="https://2014.igem.org/Team:HIT-Harbin/Project/Design" name="top"><span>Project</span></a>
+
     <div id="project" class="nav1" >                                     
 +
        <a href="https://2014.igem.org/Team:HIT-Harbin/Project" name="top"><span>Project</span></a>
       <ul>
       <ul>
         <li><a href="https://2014.igem.org/Team:HIT-Harbin/Background">Background</a></li>
         <li><a href="https://2014.igem.org/Team:HIT-Harbin/Background">Background</a></li>
         <li><a href="https://2014.igem.org/Team:HIT-Harbin/Design">Design</a></li>
         <li><a href="https://2014.igem.org/Team:HIT-Harbin/Design">Design</a></li>
 +
        <li><a href="https://2014.igem.org/Team:HIT-Harbin/Advantages">Advantages</a></li>
         <li><a href="https://2014.igem.org/Team:HIT-Harbin/Modeling">Modeling</a></li>
         <li><a href="https://2014.igem.org/Team:HIT-Harbin/Modeling">Modeling</a></li>
-
        <li><a href="https://2014.igem.org/Team:HIT-Harbin/Results">Results</a></li>
 
-
        <li><a href="https://2014.igem.org/Team:HIT-Harbin/FutureWork">Future Work</a></li>
 
       </ul>  
       </ul>  
     </div>
     </div>
-
     <!--Judging-->
+
     <!--Safety-->
-
     <div id="judging" class="nav1" onmouseover="displaySubMenu(this)" onmouseout="hideSubMenu(this)"><a href="https://2014.igem.org/Team:HIT-Harbin/Judging">Judging</a>
+
     <div id="judging" class="nav1" ><a href="https://2014.igem.org/Team:HIT-Harbin/Safety">Safety</a>
-
      <ul>
+
-
        <li><a href="https://2014.igem.org/Team:HIT-Harbin/Biobrick">Biobrick</a></li>
+
-
        <li><a href="https://2014.igem.org/Team:HIT-Harbin/Achievement">Achievement</a></li>
+
     </div>
     </div>
     <!--Wetlab-->
     <!--Wetlab-->
-
     <div id="wetlab" class="nav1" onmouseover="displaySubMenu(this)" onmouseout="hideSubMenu(this)"><a href="https://2014.igem.org/Team:HIT-Harbin/Wetlab">Wetlab</a>
+
     <div id="wetlab" class="nav1" ><a href="https://2014.igem.org/Team:HIT-Harbin/Wetlab">Wetlab</a>
       <ul>
       <ul>
         <li><a href="https://2014.igem.org/Team:HIT-Harbin/Protocols">Protocols</a></li>
         <li><a href="https://2014.igem.org/Team:HIT-Harbin/Protocols">Protocols</a></li>
         <li><a href="https://2014.igem.org/Team:HIT-Harbin/Notebook">Notebook</a></li>
         <li><a href="https://2014.igem.org/Team:HIT-Harbin/Notebook">Notebook</a></li>
-
        <li><a href="https://2014.igem.org/Team:HIT-Harbin/Safety">Safety</a></li>
 
     </div>
     </div>
 +
    <!--kuang-->
 +
    <div class="nav1 home" ><a href="https://2014.igem.org/Team:HIT-Harbin"></a></div>
     <!--software-->
     <!--software-->
-
     <div id="software" class="nav1" onmouseover="displaySubMenu(this)" onmouseout="hideSubMenu(this)"><a href="https://2014.igem.org/Team:HIT-Harbin/Software">Software</a>
+
     <div id="software" class="nav1" ><a href="https://2014.igem.org/Team:HIT-Harbin/Software">Software</a>
     </div>
     </div>
     <!--Team -->
     <!--Team -->
-
     <div id="team" class="nav1" onmouseover="displaySubMenu(this)" onmouseout="hideSubMenu(this)"><a href="https://2014.igem.org/Team:HIT-Harbin/Team">Team</a>
+
     <div id="team" class="nav1" ><a href="https://2014.igem.org/Team:HIT-Harbin/Team">Team</a>
       <ul>
       <ul>
-
        <li><a href="https://2014.igem.org/Team:HIT-Harbin/Members">Members</a></li>
 
-
        <li><a href="https://2014.igem.org/Team:HIT-Harbin/Advisors">Advisors</a></li>
 
-
        <li><a href="https://2014.igem.org/Team:HIT-Harbin/Instructors">Instructors</a></li>
 
         <li><a href="https://2014.igem.org/Team:HIT-Harbin/Attribution">Attribution</a></li>
         <li><a href="https://2014.igem.org/Team:HIT-Harbin/Attribution">Attribution</a></li>
         <li><a href="https://2014.igem.org/Team:HIT-Harbin/Acknowledge">Acknowledge</a></li>
         <li><a href="https://2014.igem.org/Team:HIT-Harbin/Acknowledge">Acknowledge</a></li>
 +
        <li><a href="https://igem.org/Team.cgi">Profile</a></li>
       </ul>
       </ul>
     </div>
     </div>
     <!--humanPractices -->
     <!--humanPractices -->
-
     <div id="humanPractices" class="nav1" onmouseover="displaySubMenu(this)" onmouseout="hideSubMenu(this)"><a href="https://2014.igem.org/Team:HIT-Harbin/Humanpractices">Human&nbsp;&nbsp;practices</a>
+
     <div id="humanPractices" class="nav1" ><a href="https://2014.igem.org/Team:HIT-Harbin/Humanpractices">Human&nbsp;&nbsp;practices</a>
       <ul>
       <ul>
-
         <li><a href="https://2014.igem.org/Team:HIT-Harbin/Preliminary">Preliminary</a></li>
+
         <li><a href="https://2014.igem.org/Team:HIT-Harbin/Humanpractices#Preliminary">Preliminary</a></li>
-
         <li><a href="https://2014.igem.org/Team:HIT-Harbin/Meetup">Meet Up</a></li>
+
         <li><a href="https://2014.igem.org/Team:HIT-Harbin/Humanpractices#Meetup">Meet Up</a></li>
-
         <li><a href="https://2014.igem.org/Team:HIT-Harbin/Course">Course</a></li>
+
         <li><a href="https://2014.igem.org/Team:HIT-Harbin/Humanpractices#Course">Course</a></li>
-
        <li><a href="https://2014.igem.org/Team:HIT-Harbin/Wechat">WeChat</a></li>
+
      </ul>  
-
    </ul>  
+
     </div>
     </div>
   </div>
   </div>
 +
<div id="minibar" class="floater" style="display: none;">
 +
<!--projectd -->
 +
    <div id="projectd" class="nav1" >                                    <a href="https://2014.igem.org/Team:HIT-Harbin/Project" name="top">Project</a>
 +
      <ul>
 +
        <li><a href="https://2014.igem.org/Team:HIT-Harbin/Background">Background</a></li>
 +
        <li><a href="https://2014.igem.org/Team:HIT-Harbin/Design">Design</a></li>
 +
        <li><a href="https://2014.igem.org/Team:HIT-Harbin/Advantages">Advantages</a></li>
 +
        <li><a href="https://2014.igem.org/Team:HIT-Harbin/Modeling">Modeling</a></li>
 +
      </ul>
 +
    </div>
 +
    <!--Judgindg-->
 +
    <div id="judgingd" class="nav1" ><a href="https://2014.igem.org/Team:HIT-Harbin/Safety">Safety</a>
 +
    </div>
 +
 
 +
    <!--Wetlabd-->
 +
    <div id="wetlabd" class="nav1" ><a href="https://2014.igem.org/Team:HIT-Harbin/Wetlab">Wetlab</a>
 +
      <ul>
 +
        <li><a href="https://2014.igem.org/Team:HIT-Harbin/Protocols">Protocols</a></li>
 +
        <li><a href="https://2014.igem.org/Team:HIT-Harbin/Notebook">Notebook</a></li>
 +
    </div>
 +
<div class="nav1 home" ><a href="https://2014.igem.org/Team:HIT-Harbin"></a></div>
 +
    <!--softwared-->
 +
    <div id="softwared" class="nav1" ><a href="https://2014.igem.org/Team:HIT-Harbin/Software">Software</a>
 +
    </div>
 +
    <!--Teamd -->
 +
    <div id="teamd" class="nav1" ><a href="https://2014.igem.org/Team:HIT-Harbin/Team">Team</a>
 +
      <ul>
 +
        <li><a href="https://2014.igem.org/Team:HIT-Harbin/Attribution">Attribution</a></li>
 +
        <li><a href="https://2014.igem.org/Team:HIT-Harbin/Acknowledge">Acknowledge</a></li>
 +
        <li><a href="https://igem.org/Team.cgi">Profile</a></li>
 +
      </ul>
 +
    </div>
 +
    <!--humanPracticesd -->
 +
    <div id="humanPracticesd" class="nav1" ><a href="https://2014.igem.org/Team:HIT-Harbin/Humanpractices">Human&nbsp;&nbsp;practices</a>
 +
      <ul>
 +
        <li><a href="https://2014.igem.org/Team:HIT-Harbin/Humanpractices#Preliminary">Preliminary</a></li>
 +
        <li><a href="https://2014.igem.org/Team:HIT-Harbin/Humanpractices#Meetup">Meet Up</a></li>
 +
        <li><a href="https://2014.igem.org/Team:HIT-Harbin/Humanpractices#Course">Course</a></li>
 +
      </ul>
 +
    </div>
 +
</div>
       <!--mainarea -->
       <!--mainarea -->
   <div id="mainarea">
   <div id="mainarea">
Line 65: Line 101:
                
                
     <div id="subtitle">
     <div id="subtitle">
-
       <h3>DIOXIN DETECTIVE</h3>
+
       <h3>Green Yeast</h3>
     </div>
     </div>
 +
   
     <div id="subtitle">
     <div id="subtitle">
       <h4>DIOXIN SENSOR</h4>
       <h4>DIOXIN SENSOR</h4>
Line 73: Line 110:
       <h5 >AhR RECEPTOR</h5>
       <h5 >AhR RECEPTOR</h5>
     </div>
     </div>
-
                    <div class="paragraphs">
+
</div>
-
                     <p>   AhR(arylhydrocarbon receptor)是在生命体内的二恶英及其类似物的结合受体,它能在二恶英的诱导下,通过膜转运与生物体内DNA相关序列结合,促使下游xenobiotic metabolizing enzymes(XMEs) 家族中的 CYP1A1 gene 表达,从而对生物体代谢进行不同程度的调控。 其具体的调控方式如图~所示,In the absence of ligand, AhR is present in the cytosol in a complex with Hsp90, XAP2 and p23 proteins. Upon binding to a ligand, the AhR complex translocates into the nucleus and the AhR dissociates from Hsp90 complex to form a heterodimer with its partner molecule, Arnt. Thus, the formed AhR/Arnt heterodimer recognizes an enhancer DNA element designated xenobiotic responsive element (XRE) sequence located in the promoter region of CYP1A1gene, resulting in the enhanced expression of the gene[1].</p>
+
<div style="width: 450px; margin: 0 auto;">
 +
<img class="Project" width="450px" src="https://static.igem.org/mediawiki/2014/7/75/Design1.png">
 +
</div>
 +
<div class="multi-columns">
 +
                  <div class="paragraphs">
 +
                     <p>   We combined yellow fluorescent protein induced by dioxins mentioned above together with DNA binding auxiliary sequence of lexAop and mdr521-805. Through the transformation of this genetic sequence, our device can express the yellow fluorescent protein massively and rapidly if the result of dioxin moleculesd detection is positive. In addition, as a result of the positive feedback effect, after the dioxin is removed, the device can still express the yellow fluorescent protein steadily, achieving the function of signal enhancement and memorization. In the absence of ligand, AhR is present in the cytosol in a complex with Hsp90, XAP2 and p23 proteins. Upon binding to a ligand, the AhR complex translocates into the nucleus and the AhR dissociates from Hsp90 complex to form a heterodimer with its partner molecule, Arnt. Thus, the formed AhR/Arnt heterodimer recognizes an enhancer DNA element designated xenobiotic responsive element (XRE) sequence located in the promoter region of CYP1A1gene, resulting in the enhanced expression of the gene.</p>
 +
 
-
<img id="Family" width="911px" height="682px" src="https://static.igem.org/mediawiki/2014/7/75/Design1.png">
 
-
<p>Reference:[1] Functional role of AhR in the expression of toxic effects by TCDD</p>
 
                 </div>
                 </div>
Line 85: Line 126:
       <h5>lexA DBD/Mdr</h5>
       <h5>lexA DBD/Mdr</h5>
     </div>
     </div>
 +
</div>
 +
<div style="width: 450px; margin: 0 auto;">
 +
<img class="Project" width="450px" src="https://static.igem.org/mediawiki/2014/a/aa/Design2.png">
 +
</div>
 +
<div class="multi-columns">
                 <div class="paragraphs">
                 <div class="paragraphs">
-
                    <p>小鼠的AHR蛋白是由805个氨基酸序列组成,其中如图所示,包含bHLH (basic helix – loop – helix)、 PAS (Per – Arnt– Sim) domain、(A and B) PAS A and B repeats Q-rich (glutamine rich) region,其中PAS domain能够在hsp90存在的情况下与目标物质dioxin及其类似物结合并在ANRT的帮助下通过bHLH序列与DNA结合,诱导下游基因的表达。我们用lexA DBD蛋白将AHR的第1-82位的氨基酸换掉,使得融合的蛋白质能够与下游基因的增强子lexAoperator相结合,出发cyc1 promoter对下游黄色荧光蛋白的表达。从而使融合蛋白能够在酵母中起到对二噁英的检测功能。
 
-
</p>
 
-
<img id="Family" width="911px" height="682px" src="https://static.igem.org/mediawiki/2014/a/aa/Design2.png">
+
                    <p>We combined yellow fluorescent protein induced by dioxins mentioned above together with DNA binding auxiliary sequence of lexAop and mdr521-805. Through the transformation of this genetic sequence, our device can express the yellow fluorescent protein massively and rapidly if the result of dioxin moleculesd detection is positive. In addition, as a result of the positive feedback effect, after the dioxin is removed, the device can still express the yellow fluorescent protein steadily, achieving the function of signal enhancement and memorization.
-
<img id="Family" width="911px" height="682px" src="https://static.igem.org/mediawiki/2014/f/fd/Design3.png">
+
</p>
 +
</div>
 +
</div>
 +
<div style="width: 450px; margin: 0 auto;">
 +
<img class="Project" width="450px" src="https://static.igem.org/mediawiki/2014/f/fd/Design3.png">
 +
</div>
 +
<div class="multi-columns">
 +
                <div class="paragraphs">
Line 99: Line 150:
     </div>
     </div>
                 <div class="paragraphs">
                 <div class="paragraphs">
-
                     <p>Here we add a rational design of cellular memory in yeast that employs autoregulatory transcriptional positive feedback .我们在表达的上述由二噁英诱导的黄色荧光蛋白后融合了lexAop及mdr521-805这段DNA绑定的辅助序列。通过这段基因序列的改造,装置在探测到二噁英分子后,就能快速大量的表达黄色荧光蛋白,并且由于正反馈的作用,当二噁英不存在后,装置仍能稳定的表达黄色荧光蛋白,实现了信号增强及记忆的功能。</p>
+
                     <p>Here we add a rational design of cellular memory in yeast that employs autoregulatory transcriptional positive feedback .We combined yellow fluorescent protein induced by dioxins mentioned above together with DNA binding auxiliary sequence of lexAop and mdr521-805. Through the transformation of this genetic sequence, our device can express the yellow fluorescent protein massively and rapidly if the result of dioxin moleculesd detection is positive. In addition, as a result of the positive feedback effect, after the dioxin is removed, the device can still express the yellow fluorescent protein steadily, achieving the function of signal enhancement and memorization.</p>
-
 
+
</div>
-
<img id="Family" width="911px" height="682px" src="https://static.igem.org/mediawiki/2014/3/34/Design4.png">
+
</div>
 +
<div style="width: 450px; margin: 0 auto;">
 +
<img class="Project" width="450px" src="https://static.igem.org/mediawiki/2014/3/34/Design4.png">
 +
</div>
 +
<div class="multi-columns">
 +
<div class="paragraphs">
Line 108: Line 164:
       <h5>DIOXIN DEGRADEE</h5>
       <h5>DIOXIN DEGRADEE</h5>
     </div>
     </div>
 +
                <div class="paragraphs">
 +
                    <p>To make our green yeast multifunctional, we had searched thoroughly for projects dealingwith dioxin or polychlorinated biphenyl compounds. The good news was that we found out the project of <a href="https://2008.igem.org/Team:Beijing_Normal">Beijing Normal in 2008</a> was about the degradation of dioxins and PCBs. In their project biphenyl catabolic enzymes which can decompose PCBs was mentioned. This enzyme system is composed by four parts, namely, BphA, BphB, BpC, and BphD, as is shown in the picture. BphA is a kind of biphenyl dioxygenase, a riesketype three-component enzyme, comprising a terminal dioxygenase that is composed of a large subunit (encoded by bphA1) and a small subunit (encoded by bphA2), a ferredoxin (encoded by bphA3) and a ferredoxin reductase (encodedby bphA4). It catalyzed the conversion of biphenyl to dihydrodiol compound in step 1,catalyzes the initial 2,3-dioxygenation to obtain a 2,3-dihydrodiol compound. BphB is a kind of dihydriol dehydrogenase, that oxidize 2,3-dihydrodiol into 2,3-dihydrodiol. BPH3(2,3-Dihydroxybiphenyl dioxygenase)cleaves the dihydroxylated ring to produce (chlorinated) 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid with the presence of oxygen. It will be then hydrolyzed to (chlorinated) benzoic acid and 2-hydroxypenta-2,4-dienoate by a hydrolase, that is BPHD. At this moment, the toxicity of dioxin has been sharply decreased, which means we have accomplished our intension to degradation.</p>
 +
</div>
 +
</div>
 +
<div style="width: 450px; margin: 0 auto;">
 +
<img class="Project" width="450px" src="https://static.igem.org/mediawiki/2014/c/c8/Dioxindegradee.png">
 +
</div>
 +
<div class="multi-columns">
 +
<div class="paragraphs">
 +
<p>Meanwhile, we find binding protein Aga2 in the parts storage. This protein can specifically combine with aga1 protein on the cell wall of yeasts. The combination will lead to the immobilization of enzyme mentioned above.</p>
 +
 +
<p>For this section, we intended to bind seven peptide chains on the membrane so that dioxin in the domain can be degraded. However, we are also challenged by the problems like too large mass of protein to bind or the balance and regulation among different enzymes. Hence, this section of our project needed to be optimized in the future.</p>
 +
</div>
 +
</div>
 +
<div style="width: 450px; margin: 0 auto;">
 +
<img class="Project" width="450px" src="https://static.igem.org/mediawiki/2014/1/18/Dioxindegradee%60.png">
 +
</div>
 +
<div class="multi-columns">
 +
<div class="paragraphs">
 +
 +
                </div>
  <div id="subtitle">
  <div id="subtitle">
       <h5>DIOXIN CONCENTRATION</h5>
       <h5>DIOXIN CONCENTRATION</h5>
     </div>
     </div>
 +
<div class="paragraphs">
 +
                    <p>Dioxin is hard to dissolve in water but easy in organic solvents. However, yeasts live in the water. Thus, by improving the water-solubility of dioxin will largely increase the effect of our device. By looking through parts provided by previous teams, we found out AlnA(BBa_K398200), which is a kind of natural surfactant, an emulsifying protein present in the Alasan emulsifying complex which naturally  occurs in Acinetobacter radioresistens. Nucleotide sequence optimized for expression in E.coli. Especially, we tagged secretion label on alnA protein in order to cut off secretion label of the fusion protein and secrete alnA outside of its cell with the effect of endoplasmic reticulum, so as to increase fat-soluble concentration around yeasts. Dissolution gradient will be formed for different concentration of dioxin from inside out, and then accomplish our goal of chemotaxis and enrichment of dioxin. Together with the presence of zif268-HIV binding domain, the expression of surfactant will be lengthened and well regulated.</p>
 +
</div>
 +
</div>
 +
<div style="width: 450px; margin: 0 auto;">
 +
<img class="Project" width="450px" src="https://static.igem.org/mediawiki/2014/a/a4/Dioxconcentrate1.png">
 +
</div>
 +
<div class="multi-columns">
 +
<div class="paragraphs">
 +
 +
<p>In the project of HITGEM-2014, because of the new Gibson Method and a variety of problems in wet lab, we just finished the experiments and modeling proof for the first section. As for the following projects, only theoretical modeling and proof are realized. We will put a sound end to the following sections in the future.</p>
 +
<p>About experiments, click <a href="https://2014.igem.org/Team:HIT-Harbin/Notebook">here</a>.</p>
 +
<p>About modeling, click <a href="https://2014.igem.org/Team:HIT-Harbin/Modeling">here</a>.</p>
 +
 +
<h5>Reference:</h5>
 +
 +
<p>1.Mimura J, Fujii-Kuriyama Y. Functional role of AhR in the expression of toxic effects by TCDD[J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 2003, 1619(3): 263-268.</p>
 +
<p>2.Denison M S, Heath-Pagliuso S. The Ah receptor: a regulator of the biochemical and toxicological actions of structurally diverse chemicals[J]. Bulletin of environmental contamination and toxicology, 1998, 61(5): 557-568.</p>
 +
<p>3.Toren A, Segal G, Ron E Z, et al. Structure–function studies of the recombinant protein bioemulsifier AlnA[J]. Environmental microbiology, 2002, 4(5): 257-261.</p>
 +
<p>4.Furukawa K, Fujihara H. Microbial degradation of polychlorinated biphenyls: biochemical and molecular features[J]. Journal of bioscience and bioengineering, 2008, 105(5): 433-449.</p>
 +
<p>5.Whitelaw M L, Göttlicher M, Gustafsson J A, et al. Definition of a novel ligand binding domain of a nuclear bHLH receptor: co-localization of ligand and hsp90 binding activities within the regulable inactivation domain of the dioxin receptor[J]. The EMBO journal, 1993, 12(11): 4169.</p>
 +
                 </div>
                 </div>
-
               
 
-
                <div class="cta-box">
 
-
                    <a href="https://2014.igem.org/Team:HIT-Harbin/Modeling" class="custom-button">Learn More</a>
 
-
                    <p>Click here and get more details about our project.</p>
 
                 </div>
                 </div>
 +
               
                
                
                  
                  

Latest revision as of 02:30, 18 October 2014

Design

Green Yeast

DIOXIN SENSOR

AhR RECEPTOR

We combined yellow fluorescent protein induced by dioxins mentioned above together with DNA binding auxiliary sequence of lexAop and mdr521-805. Through the transformation of this genetic sequence, our device can express the yellow fluorescent protein massively and rapidly if the result of dioxin moleculesd detection is positive. In addition, as a result of the positive feedback effect, after the dioxin is removed, the device can still express the yellow fluorescent protein steadily, achieving the function of signal enhancement and memorization. In the absence of ligand, AhR is present in the cytosol in a complex with Hsp90, XAP2 and p23 proteins. Upon binding to a ligand, the AhR complex translocates into the nucleus and the AhR dissociates from Hsp90 complex to form a heterodimer with its partner molecule, Arnt. Thus, the formed AhR/Arnt heterodimer recognizes an enhancer DNA element designated xenobiotic responsive element (XRE) sequence located in the promoter region of CYP1A1gene, resulting in the enhanced expression of the gene.

lexA DBD/Mdr

We combined yellow fluorescent protein induced by dioxins mentioned above together with DNA binding auxiliary sequence of lexAop and mdr521-805. Through the transformation of this genetic sequence, our device can express the yellow fluorescent protein massively and rapidly if the result of dioxin moleculesd detection is positive. In addition, as a result of the positive feedback effect, after the dioxin is removed, the device can still express the yellow fluorescent protein steadily, achieving the function of signal enhancement and memorization.

MEMORY SYSTEM

Here we add a rational design of cellular memory in yeast that employs autoregulatory transcriptional positive feedback .We combined yellow fluorescent protein induced by dioxins mentioned above together with DNA binding auxiliary sequence of lexAop and mdr521-805. Through the transformation of this genetic sequence, our device can express the yellow fluorescent protein massively and rapidly if the result of dioxin moleculesd detection is positive. In addition, as a result of the positive feedback effect, after the dioxin is removed, the device can still express the yellow fluorescent protein steadily, achieving the function of signal enhancement and memorization.

DIOXIN DEGRADEE

To make our green yeast multifunctional, we had searched thoroughly for projects dealingwith dioxin or polychlorinated biphenyl compounds. The good news was that we found out the project of Beijing Normal in 2008 was about the degradation of dioxins and PCBs. In their project biphenyl catabolic enzymes which can decompose PCBs was mentioned. This enzyme system is composed by four parts, namely, BphA, BphB, BpC, and BphD, as is shown in the picture. BphA is a kind of biphenyl dioxygenase, a riesketype three-component enzyme, comprising a terminal dioxygenase that is composed of a large subunit (encoded by bphA1) and a small subunit (encoded by bphA2), a ferredoxin (encoded by bphA3) and a ferredoxin reductase (encodedby bphA4). It catalyzed the conversion of biphenyl to dihydrodiol compound in step 1,catalyzes the initial 2,3-dioxygenation to obtain a 2,3-dihydrodiol compound. BphB is a kind of dihydriol dehydrogenase, that oxidize 2,3-dihydrodiol into 2,3-dihydrodiol. BPH3(2,3-Dihydroxybiphenyl dioxygenase)cleaves the dihydroxylated ring to produce (chlorinated) 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid with the presence of oxygen. It will be then hydrolyzed to (chlorinated) benzoic acid and 2-hydroxypenta-2,4-dienoate by a hydrolase, that is BPHD. At this moment, the toxicity of dioxin has been sharply decreased, which means we have accomplished our intension to degradation.

Meanwhile, we find binding protein Aga2 in the parts storage. This protein can specifically combine with aga1 protein on the cell wall of yeasts. The combination will lead to the immobilization of enzyme mentioned above.

For this section, we intended to bind seven peptide chains on the membrane so that dioxin in the domain can be degraded. However, we are also challenged by the problems like too large mass of protein to bind or the balance and regulation among different enzymes. Hence, this section of our project needed to be optimized in the future.

DIOXIN CONCENTRATION

Dioxin is hard to dissolve in water but easy in organic solvents. However, yeasts live in the water. Thus, by improving the water-solubility of dioxin will largely increase the effect of our device. By looking through parts provided by previous teams, we found out AlnA(BBa_K398200), which is a kind of natural surfactant, an emulsifying protein present in the Alasan emulsifying complex which naturally occurs in Acinetobacter radioresistens. Nucleotide sequence optimized for expression in E.coli. Especially, we tagged secretion label on alnA protein in order to cut off secretion label of the fusion protein and secrete alnA outside of its cell with the effect of endoplasmic reticulum, so as to increase fat-soluble concentration around yeasts. Dissolution gradient will be formed for different concentration of dioxin from inside out, and then accomplish our goal of chemotaxis and enrichment of dioxin. Together with the presence of zif268-HIV binding domain, the expression of surfactant will be lengthened and well regulated.

In the project of HITGEM-2014, because of the new Gibson Method and a variety of problems in wet lab, we just finished the experiments and modeling proof for the first section. As for the following projects, only theoretical modeling and proof are realized. We will put a sound end to the following sections in the future.

About experiments, click here.

About modeling, click here.

Reference:

1.Mimura J, Fujii-Kuriyama Y. Functional role of AhR in the expression of toxic effects by TCDD[J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 2003, 1619(3): 263-268.

2.Denison M S, Heath-Pagliuso S. The Ah receptor: a regulator of the biochemical and toxicological actions of structurally diverse chemicals[J]. Bulletin of environmental contamination and toxicology, 1998, 61(5): 557-568.

3.Toren A, Segal G, Ron E Z, et al. Structure–function studies of the recombinant protein bioemulsifier AlnA[J]. Environmental microbiology, 2002, 4(5): 257-261.

4.Furukawa K, Fujihara H. Microbial degradation of polychlorinated biphenyls: biochemical and molecular features[J]. Journal of bioscience and bioengineering, 2008, 105(5): 433-449.

5.Whitelaw M L, Göttlicher M, Gustafsson J A, et al. Definition of a novel ligand binding domain of a nuclear bHLH receptor: co-localization of ligand and hsp90 binding activities within the regulable inactivation domain of the dioxin receptor[J]. The EMBO journal, 1993, 12(11): 4169.