Team:UGA-Georgia/Modeling
From 2014.igem.org
(18 intermediate revisions not shown) | |||
Line 1: | Line 1: | ||
<!-- *** What falls between these lines is the Alert Box! You can remove it from your pages once you have read and understood the alert *** --> | <!-- *** What falls between these lines is the Alert Box! You can remove it from your pages once you have read and understood the alert *** --> | ||
- | |||
{{CSS/Main}} | {{CSS/Main}} | ||
+ | |||
<html> | <html> | ||
- | + | <style> | |
+ | #contentSub, #footer-box, #catlinks, #search-controls, #p-logo, .printfooter, .firstHeading,.visualClear {display: none;} /*-- hides default wiki settings --*/ | ||
+ | |||
+ | <style> | ||
#sddm | #sddm | ||
{ margin: 0; | { margin: 0; | ||
Line 37: | Line 40: | ||
margin: 0; | margin: 0; | ||
padding: 0; | padding: 0; | ||
- | background: #EAEBD8; | + | background: #EAEBD8; |
border: 1px solid #5970B2} | border: 1px solid #5970B2} | ||
Line 49: | Line 52: | ||
text-align: left; | text-align: left; | ||
text-decoration: none; | text-decoration: none; | ||
- | background: # | + | background: #FEE5AD; |
color: #000000; | color: #000000; | ||
font: 15px arial} | font: 15px arial} | ||
Line 57: | Line 60: | ||
color: #FFF} | color: #FFF} | ||
</style> | </style> | ||
+ | |||
+ | <html> | ||
+ | <head> | ||
+ | <style> | ||
+ | body { | ||
+ | background-color:white; | ||
+ | background-image: linear-gradient(90deg, rgba(200,0,0,.5) 50%, transparent 50%), | ||
+ | linear-gradient(rgba(200,0,0,.5) 50%, transparent 50%); | ||
+ | background-size:50px 50px; | ||
+ | </style> | ||
+ | </head> | ||
+ | <body> | ||
<script> | <script> | ||
var timeout = 500; | var timeout = 500; | ||
Line 106: | Line 121: | ||
</style> | </style> | ||
<!--main content --> | <!--main content --> | ||
- | <table width=" | + | <table width="85%" align="center" bgcolor="#E6E6FA"> |
<!--navigation menu --> | <!--navigation menu --> | ||
+ | <br> | ||
<td align="center" colspan="3"> | <td align="center" colspan="3"> | ||
Line 115: | Line 131: | ||
<tr heigth="75px"> | <tr heigth="75px"> | ||
- | + | <div id="banner"><img id="idSelector" src="https://static.igem.org/mediawiki/2014/f/fa/Bannerugafinal.png" width="100%" height="100" align="center"></div> | |
- | <td style="border:1px #fff;" align="center" height ="45px" width="250" onMouseOver="this.bgColor='# | + | <td style="border:1px #fff;" align="center" height ="45px" width="250" onMouseOver="this.bgColor='#FF000'" onMouseOut="this.bgColor='#FEE5AD'" bgColor=#FEE5AD> |
<a href="https://2014.igem.org/Team:UGA-Georgia"><p style="font-family: Basic L"><font size="2">HOME</font></p> </a> </td> | <a href="https://2014.igem.org/Team:UGA-Georgia"><p style="font-family: Basic L"><font size="2">HOME</font></p> </a> </td> | ||
- | <td style="border:1px #fff" align="center" height ="45px" width="250" onMouseOver="this.bgColor='# | + | <td style="border:1px #fff" align="center" height ="45px" width="250" onMouseOver="this.bgColor='#FF000'" onMouseOut="this.bgColor='#FEE5AD'" bgColor=#FEE5AD> |
<a href="#" onmouseover="mopen('m1')" | <a href="#" onmouseover="mopen('m1')" | ||
- | onmouseout="mclosetime()" style="color:#000000"><p style="font-family: Basic L"><font size="2"><b>PROJECT</b></font></p></a> | + | onmouseout="mclosetime()" style="color:#000000" onMouseOver="this.bgColor='#FF000'" onMouseOut="this.bgColor='#FEE5AD'" bgColor=#FEE5AD><p style="font-family: Basic L"><font size="2"><b>PROJECT</b></font></p></a> |
<div id="m1" | <div id="m1" | ||
onmouseover="mcancelclosetime()" | onmouseover="mcancelclosetime()" | ||
onmouseout="mclosetime()"> | onmouseout="mclosetime()"> | ||
+ | <a href=“https://2014.igem.org/Team:UGA-Georgia/Overview">Overview</a> | ||
<a href="https://2014.igem.org/Team:UGA-Georgia/Geraniol">Geraniol</a> | <a href="https://2014.igem.org/Team:UGA-Georgia/Geraniol">Geraniol</a> | ||
<a href="https://2014.igem.org/Team:UGA-Georgia/Modeling">Modeling</a> | <a href="https://2014.igem.org/Team:UGA-Georgia/Modeling">Modeling</a> | ||
Line 131: | Line 148: | ||
</div></td> | </div></td> | ||
- | <td style="border:1px #fff;" align="center" height ="45px" width="250" onMouseOver="this.bgColor='# | + | <td style="border:1px #fff;" align="center" height ="45px" width="250" onMouseOver="this.bgColor='#FF000'" onMouseOut="this.bgColor='#FEE5AD'" bgColor=#FEE5AD> |
<a href="#" onmouseover="mopen('m3')" | <a href="#" onmouseover="mopen('m3')" | ||
- | onmouseout="mclosetime()" style="color:#000000"><p style="font-family: Basic L"><font size="2"><b>WET | + | onmouseout="mclosetime()" style="color:#000000"><p style="font-family: Basic L"><font size="2"><b>WET LAB</b></font></p></a> |
<div id="m3" | <div id="m3" | ||
onmouseover="mcancelclosetime()" | onmouseover="mcancelclosetime()" | ||
Line 142: | Line 159: | ||
</div></td> | </div></td> | ||
- | <td style="border:1px #fff;" align="center" height ="45px" width="250" onMouseOver="this.bgColor='# | + | <td style="border:1px #fff;" align="center" height ="45px" width="250" onMouseOver="this.bgColor='#FF000'" onMouseOut="this.bgColor='#FEE5AD'" bgColor=#FEE5AD> |
+ | <a href="#" onmouseover="mopen('m4')" | ||
+ | onmouseout="mclosetime()" style="color:#000000"><p style="font-family: Basic L"><font size="2"><b>HUMAN PRACTICES</b></font></p></a> | ||
+ | <div id="m4" | ||
+ | onmouseover="mcancelclosetime()" | ||
+ | onmouseout="mclosetime()"> | ||
+ | <a href="https://2014.igem.org/Team:UGA-Georgia/Outreach">Outreach</a> | ||
+ | <a href="https://2014.igem.org/Team:UGA-Georgia/Seminars">Seminars</a> | ||
+ | </div></td> | ||
+ | |||
+ | <td style="border:1px #fff;" align="center" height ="45px" width="250" onMouseOver="this.bgColor='#FF000'" onMouseOut="this.bgColor='#FEE5AD'" bgColor=#FEE5AD> | ||
<a href="#" onmouseover="mopen('m2')" | <a href="#" onmouseover="mopen('m2')" | ||
onmouseout="mclosetime()" style="color:#000000"><p style="font-family: Basic L"><font size="2"><b>TEAM</b></font></p></a> | onmouseout="mclosetime()" style="color:#000000"><p style="font-family: Basic L"><font size="2"><b>TEAM</b></font></p></a> | ||
Line 148: | Line 175: | ||
onmouseover="mcancelclosetime()" | onmouseover="mcancelclosetime()" | ||
onmouseout="mclosetime()"> | onmouseout="mclosetime()"> | ||
+ | <a href="https://igem.org/Team.cgi?id=1383">Official Team Profile</a> | ||
<a href="https://2014.igem.org/Team:UGA-Georgia/Team">Members</a> | <a href="https://2014.igem.org/Team:UGA-Georgia/Team">Members</a> | ||
<a href="https://2014.igem.org/Team:UGA-Georgia/Attributions">Attributions</a> | <a href="https://2014.igem.org/Team:UGA-Georgia/Attributions">Attributions</a> | ||
Line 158: | Line 186: | ||
<!--end navigation menu --> | <!--end navigation menu --> | ||
- | |||
</tr> | </tr> | ||
</tr> | </tr> | ||
Line 169: | Line 196: | ||
<!--modeling content --> | <!--modeling content --> | ||
- | <tr><td colspan="3"> <h3> | + | <tr><td colspan="3"> <h3><font size="6">Our Model</font></h3> |
- | </tr> | + | <br> |
- | + | </td></tr> | |
<tr> | <tr> | ||
- | <td width=" | + | <td width="50%" valign="top"> |
- | <p> | + | <h5> Idea: </h5> |
- | </td> | + | <p>To increase geraniol yield by mapping the entire lipid biosynthesis pathway in <i>M. maripaludis</i>, performing a genome-scale flux balance analysis and developing strategies for the over production of isoprenoid compounds. </p> |
+ | <br> | ||
+ | <h5>Results:</h5> | ||
+ | <p>We designed a metabolic model (fig. 1) for isoprenoid biosynthesis based upon the complete pathway, including stoichiometric values of acetyl-CoA, ATP, and other compounds required for cell growth. The Biocyc, KEGG, IMG, and SEED databases were used to identify candidate genes/enzymes responsible for each reaction. </p> | ||
+ | <br> | ||
+ | <h5> In Progress:</h5> | ||
+ | <p>To run computational analysis on our models we use Systems Biology Markup Language (SBML) formatted files. SBML files contain all information regarding reactions/metabolites. Below (table 1) are a few examples of reaction information from the <i>M. maripaludis</i> SBML file, the entire model contains 619 reactions and 604 metabolites. SBML files are used for In-silico metabolic engineering software, the particular ones we are using are OptFlux™ and MATLAB® in the COBRA toolbox. The goal of using these programs is to complete a genome-scale flux balance analysis and develop strategies for the overproduction of isoprenoid compounds. These software are capable of running simulations given any mutation, environmental condition, up/down-regulation, gene insertion/deletion, etc. After constructing the model, we may then insert new reactions of interest (e.g. geraniol synthase) and optimize specific biomass towards overproduction of isoprenoid compounds. These software will effectively calculate the most efficient ‘strain’ for our biomass query including knock-outs of unnecessary interfering genes, optimal growth conditions, and up/down regulation of particular genes. Figure 2 is an excerpt from OptFlux™ software exemplifying how a user may calculate critical genes/reactions for their biomass flux of interest. Figure 3 is an excerpt from MATLAB® software demonstrating how a user may run optimization simulations by defining various parameters. </p> | ||
+ | <br> | ||
+ | <h5> Outlook:</h5> | ||
+ | <p> Build a regulatory model for isoprenoid biosynthesis in <i>M. maripaludis</i>, allowing further model optimization. Using primary literature, we will identify enzyme kinetics and effectors, missing genes/enzymes and regulation upon each individual reaction. </p> | ||
+ | <br> | ||
+ | <h4> Discussion: </h4> | ||
+ | <p>Optimization of biomass production in <i>M. maripaludis</i> will lead us to results that demand the effective up-regulation and down-regulation of certain genes in the pathway that act upon the flux of biomass. For this to become a practical solution, one must establish a library of regulators that can provide variable levels of expression. This led us to our next project – <a href="https://2014.igem.org/Team:UGA-Georgia/RBS">Establishing and characterizing the first Ribosome Binding Site (RBS) library in methanogens.</a> | ||
+ | <br> | ||
+ | <br> | ||
+ | <br> | ||
+ | <table style="width:100%" align="center"> | ||
+ | <p><b> Table 1</b></p> | ||
+ | <tr> | ||
+ | <td><b> Rxn Name </b></td> | ||
+ | <td><b> Rxn Description </b></td> | ||
+ | <td><b> Formula </b></td> | ||
+ | <td><b> GPR association </b></td> | ||
+ | <td><b> Genes </b></td> | ||
+ | <td><b> Protein </b></td> | ||
+ | </tr> | ||
+ | <tr></tr> | ||
+ | <tr> | ||
+ | <td>R1</td> | ||
+ | <td> phosphoglucomutase </td> | ||
+ | <td> g1p <=> g6p </td> | ||
+ | <td> MMP1077 </td> | ||
+ | <td> MMP1077 </td> | ||
+ | <td> </td> | ||
+ | </tr> | ||
+ | <tr></tr> | ||
+ | <tr> | ||
+ | <td>R2</td> | ||
+ | <td>ADP-specific glucokinase</td> | ||
+ | <td>adp + glc -> amp + g6p</td> | ||
+ | <td>MMP1296</td> | ||
+ | <td>MMP1296</td> | ||
+ | <td>pfkC</td> | ||
+ | </tr> | ||
+ | <tr></tr> | ||
+ | <tr> | ||
+ | <td>R3</td> | ||
+ | <td>glyceraldehyde-3-phosphate dehydrogenase (NADP+)</td> | ||
+ | <td>g3p + nadp + h2o -> 3pg + nadph + h</td> | ||
+ | <td>MMP1487</td> | ||
+ | <td>MMP1487</td> | ||
+ | <td>gapN</td> | ||
- | < | + | </table> |
- | < | + | <br> |
- | </ | + | <br> |
+ | <br> | ||
+ | <br> | ||
+ | <h5> References</h5> | ||
+ | <p> [1] OptFlux™ “OptFlux 3 Beginner’s Tutorial.” Web. 29 Apr. 2014. <a href="http://darwin.di.uminho.pt/optflux/tutorial/TutorialOptFlux3.pdf">http://darwin.di.uminho.pt/optflux/tutorial/TutorialOptFlux3.pdf</a></p> | ||
+ | <br> | ||
+ | <p> [2] "Optimization App." MathWorks®, n.d. Web. 17 Oct. 2014. <a href="http://www.mathworks.com/help/optim/ug/graphical-optimization-tool.html">http://www.mathworks.com/help/optim/ug/graphical-optimization-tool.html</a></p> | ||
+ | |||
+ | <td width="50%" valign="top" align="center"> | ||
+ | <img src="https://static.igem.org/mediawiki/2014/0/08/Pathwaytemplate.png" width="600px" height=800px"> | ||
+ | <p align="center"> Fig. 1 This metabolic model of the isoprenoid biosynthesis pathway was compiled that includes stoichiometric values of acetyl-CoA, ATP and other compounds required for cell growth. The Biocyc, KEGG, IMG, and SEED databases were used to identify candidate genes/enzymes responsible for each reaction.</p> | ||
+ | <br> | ||
+ | <br> | ||
+ | <img src="https://static.igem.org/mediawiki/2014/2/27/MATLABinterface.png" width="400px" height="300px"> | ||
+ | <p> [1] Fig. 2 An excerpt from OptFlux™ software exemplifying how a user may calculate critical genes/reactions for their biomass flux of interest.</p> | ||
+ | <br> | ||
+ | <br> | ||
+ | <img src="https://static.igem.org/mediawiki/2014/4/4a/MATLABoptimiz.png" width="450px" height="350px"> | ||
+ | <p> [2] Fig. 3 An excerpt from MATLAB® software demonstrating how a user may run optimization simulations by defining various parameters. </p> | ||
+ | |||
+ | </tr> | ||
+ | </td> | ||
</table> | </table> | ||
+ | </body> | ||
</html> | </html> |
Latest revision as of 03:19, 18 October 2014
|
|||||||||||||||||||||||||
Our Model | |||||||||||||||||||||||||
Idea:To increase geraniol yield by mapping the entire lipid biosynthesis pathway in M. maripaludis, performing a genome-scale flux balance analysis and developing strategies for the over production of isoprenoid compounds. Results:We designed a metabolic model (fig. 1) for isoprenoid biosynthesis based upon the complete pathway, including stoichiometric values of acetyl-CoA, ATP, and other compounds required for cell growth. The Biocyc, KEGG, IMG, and SEED databases were used to identify candidate genes/enzymes responsible for each reaction. In Progress:To run computational analysis on our models we use Systems Biology Markup Language (SBML) formatted files. SBML files contain all information regarding reactions/metabolites. Below (table 1) are a few examples of reaction information from the M. maripaludis SBML file, the entire model contains 619 reactions and 604 metabolites. SBML files are used for In-silico metabolic engineering software, the particular ones we are using are OptFlux™ and MATLAB® in the COBRA toolbox. The goal of using these programs is to complete a genome-scale flux balance analysis and develop strategies for the overproduction of isoprenoid compounds. These software are capable of running simulations given any mutation, environmental condition, up/down-regulation, gene insertion/deletion, etc. After constructing the model, we may then insert new reactions of interest (e.g. geraniol synthase) and optimize specific biomass towards overproduction of isoprenoid compounds. These software will effectively calculate the most efficient ‘strain’ for our biomass query including knock-outs of unnecessary interfering genes, optimal growth conditions, and up/down regulation of particular genes. Figure 2 is an excerpt from OptFlux™ software exemplifying how a user may calculate critical genes/reactions for their biomass flux of interest. Figure 3 is an excerpt from MATLAB® software demonstrating how a user may run optimization simulations by defining various parameters. Outlook:Build a regulatory model for isoprenoid biosynthesis in M. maripaludis, allowing further model optimization. Using primary literature, we will identify enzyme kinetics and effectors, missing genes/enzymes and regulation upon each individual reaction. Discussion:Optimization of biomass production in M. maripaludis will lead us to results that demand the effective up-regulation and down-regulation of certain genes in the pathway that act upon the flux of biomass. For this to become a practical solution, one must establish a library of regulators that can provide variable levels of expression. This led us to our next project – Establishing and characterizing the first Ribosome Binding Site (RBS) library in methanogens.
References[1] OptFlux™ “OptFlux 3 Beginner’s Tutorial.” Web. 29 Apr. 2014. http://darwin.di.uminho.pt/optflux/tutorial/TutorialOptFlux3.pdf [2] "Optimization App." MathWorks®, n.d. Web. 17 Oct. 2014. http://www.mathworks.com/help/optim/ug/graphical-optimization-tool.html |
Fig. 1 This metabolic model of the isoprenoid biosynthesis pathway was compiled that includes stoichiometric values of acetyl-CoA, ATP and other compounds required for cell growth. The Biocyc, KEGG, IMG, and SEED databases were used to identify candidate genes/enzymes responsible for each reaction. [1] Fig. 2 An excerpt from OptFlux™ software exemplifying how a user may calculate critical genes/reactions for their biomass flux of interest. [2] Fig. 3 An excerpt from MATLAB® software demonstrating how a user may run optimization simulations by defining various parameters. |