Team:Oxford/biosensor optimisation1

From 2014.igem.org

(Difference between revisions)
 
(2 intermediate revisions not shown)
Line 90: Line 90:
<div class="row">
<div class="row">
-
  <a href="#show1" class="show" id="show1"><div class="modelling">
+
  <a href="#show1" class="show" id="show1"><div class="wetlab">
-
<h1white>pOXON-2-dcmR-mCherry</h1white>
+
<h1white>Insert biochem here?</h1white>
<img src="https://static.igem.org/mediawiki/2014/4/4d/Oxford_plus-sign-clip-art.png" style="float:right;position:relative; width:2%;" />
<img src="https://static.igem.org/mediawiki/2014/4/4d/Oxford_plus-sign-clip-art.png" style="float:right;position:relative; width:2%;" />
</div></a>
</div></a>
-
  <a href="#hide1" class="hide" id="hide1"><div class="modelling">
+
  <a href="#hide1" class="hide" id="hide1"><div class="wetlab">
-
<h1white>pOXON-2-dcmR-mCherry</h1white></div></a>
+
<h1white>Insert biochem here?</h1white></div></a>
  <div class="list">
  <div class="list">
  <div class="white_news_block2">
  <div class="white_news_block2">
-
<img src="https://static.igem.org/mediawiki/2014/b/b6/Oxford_pOXON-2-dcmR-mCherry_text.png" style="float:left;position:relative; width:100%;" />
+
<h1>Biochemistry...</h1>
-
Oxford iGEM 2014
+
Biochem stuff...
</div>
</div>
Line 124: Line 124:
<div class="row">
<div class="row">
  <a href="#show2" class="show" id="show2"><div class="modelling">
  <a href="#show2" class="show" id="show2"><div class="modelling">
-
<h1white>pSRK-Gm-pdcmAsfGFP</h1white>
+
<h1white>What happens when we change the amount of each input added?</h1white>
<img src="https://static.igem.org/mediawiki/2014/4/4d/Oxford_plus-sign-clip-art.png" style="float:right;position:relative; width:2%;" />
<img src="https://static.igem.org/mediawiki/2014/4/4d/Oxford_plus-sign-clip-art.png" style="float:right;position:relative; width:2%;" />
</div></a>
</div></a>
  <a href="#hide2" class="hide" id="hide2"><div class="modelling">
  <a href="#hide2" class="hide" id="hide2"><div class="modelling">
-
<h1white>pSRK-Gm-pdcmAsfGFP</h1white></div></a>
+
<h1white>What happens when we change the amount of each input added?</h1white></div></a>
  <div class="list">
  <div class="list">
  <div class="white_news_block2">
  <div class="white_news_block2">
-
<img src="https://static.igem.org/mediawiki/2014/1/12/Oxford_pSRK-Gm-pdcmAsfGFP_text.png" style="float:left;position:relative; width:100%;" />
+
<img src="https://static.igem.org/mediawiki/2014/5/51/Oxford_varying_ATC_and_DCM.png" style="margin-left:0%; float:right; margin-right:0%; position:relative; width:45%;" />
-
Oxford iGEM 2014
 
 +
<div class="white_news_block">
 +
<h1>What are these graphs and where did they come from?</h1>
 +
Using the bacterial fluorescence models we have built, we predicted the steady-state fluorescence levels of the system in varying levels of DCM and ATC by solving the system of differential equations we produced during the characterization section. The results are illustrated in the 3-dimensional surface plot below. <u>(which system?)</u>
 +
<br><br>
 +
The two 2-dimensional graphs are slices taken from the 3-D plot. In each of these 'slices' we are effectively holding one variable constant (either DCM or ATC) while varying the other.
 +
<br><br>
 +
Producing the 3-dimensional plot was produced by plotting the final fluorescence value from lots of different possible combinations of the two inputs (ATC and DCM). The top graph shows the variation in final fluorescence when DCM is held constant and ATC is varied, the second graph is vice versa.
 +
<br><br>
 +
It is important to understand that these graphs represent the expected steady state level of fluorescence of thousands of different simulations. From this we can select the DCM and ATC concentrations for a specific fluorescence response.
 +
<br><br>
</div>
</div>
-
 
+
<div class="white_news_block">
-
  </div>
+
<h1>How much of each input should we use to test the biosensor?</h1>
 +
An ideal biosensor must be:
 +
<br><br>
 +
•          Robust- it must be able to cope with variations in ATC concentration without radically altering the behaviour of the system. This is crucial because we cannot ensure that ATC concentrations throughout all the cells will be uniform in the real system.
 +
<br><br>
 +
The top graph demonstrates this nicely. Beyond a certain threshold value of ATC, there is little change in the fluorescence response predicted - it saturates and maintains a constant level. Practically, this means we have to ensure that the ATC concentrations present in our final system must comfortably exceed this threshold ATC value.
 +
  <br><br>
 +
•      Sensitive- it must change significantly in low concentrations of DCM. This is vital in order to achieve a response that is as close to binary as possible. The ideal system will have a very sharp decline in fluorescence at a predefined, very low value of DCM. This will ensure that the sensor will clearly indicate when the DCM mixture can be safely disposed of.
 +
<br><br>
 +
From our initial system characterization, we have established that when DCM is not present in the system, there will be no fluorescence response aside from that due to the basal transcription rate. However, the model predicts that when even a small amount of DCM is added and the transient behaviour has stabilized, the fluorescence expressed in the system quickly reaches its saturation value. This corresponds to a highly sensitive biosensor which can effectively only express two fluorescence levels- zero or a predefined maximum. The transition from zero to the maximum saturation value occurs at very low concentrations of DCM. <br><br>
 +
To summarise, we have established that the inputs to our biosensor should be a constant medium concentration of ATC and a varying concentration of DCM as it is degraded. We should note that the ATC concentration will not value without external influence because the system does not consume ATC and its rate of degradation is negligible.
 +
</div>
 +
</div>
  </div>
  </div>
 +
</div>
Line 182: Line 204:
<div class="row">
<div class="row">
  <a href="#show3" class="show" id="show3"><div class="wetlab">
  <a href="#show3" class="show" id="show3"><div class="wetlab">
-
<h1white>Why these two plasmid backbones?</h1white>
+
<h1white>Insert biochem here?</h1white>
<img src="https://static.igem.org/mediawiki/2014/4/4d/Oxford_plus-sign-clip-art.png" style="float:right;position:relative; width:2%;" />
<img src="https://static.igem.org/mediawiki/2014/4/4d/Oxford_plus-sign-clip-art.png" style="float:right;position:relative; width:2%;" />
</div></a>
</div></a>
  <a href="#hide3" class="hide" id="hide3"><div class="wetlab">
  <a href="#hide3" class="hide" id="hide3"><div class="wetlab">
-
<h1white>Why these two plasmid backbones?</h1white></div></a>
+
<h1white>Insert biochem here?</h1white></div></a>
  <div class="list">
  <div class="list">
<div class="white_news_block2">
<div class="white_news_block2">
-
<li>The two plasmids are partitioned during cell division by different systems, thus an equal proportion of each plasmid is maintained in each new daughter cell. </li><br> <li>Different antibiotic resistances will allow us to select for cells that have taken up both plasmids by application of both antibiotics.</li><br> <li>The replication origins compatible with E.coli and pseudomonas strains.</li><br> <li>We have used two plasmids so that we can test each part in isolation before transforming them both into the same cell.</li>
+
<h1>Biochemistry...</h1>
 +
Biochem stuff...
</div>
</div>
Line 224: Line 247:
<div class="row">
<div class="row">
-
  <a href="#show4" class="show" id="show4"><div class="wetlab">
+
  <a href="#show4" class="show" id="show4"><div class="modelling">
-
<h1white>How were the constructs made?</h1white>
+
<h1white>Modelling the biosensor to optimise ’ON’ and ‘OFF’ response</h1white>
<img src="https://static.igem.org/mediawiki/2014/4/4d/Oxford_plus-sign-clip-art.png" style="float:right;position:relative; width:2%;" />
<img src="https://static.igem.org/mediawiki/2014/4/4d/Oxford_plus-sign-clip-art.png" style="float:right;position:relative; width:2%;" />
</div></a>
</div></a>
-
  <a href="#hide4" class="hide" id="hide4"><div class="wetlab">
+
  <a href="#hide4" class="hide" id="hide4"><div class="modelling">
-
<h1white>How were the constructs made?</h1white></div></a>
+
<h1white>Modelling the biosensor to optimise ’ON’ and ‘OFF’ response</h1white></div></a>
  <div class="list">
  <div class="list">
  <div class="white_news_block2">
  <div class="white_news_block2">
-
<img src="https://static.igem.org/mediawiki/2014/0/08/Oxford_Fran_flowchart2.png" style="float:right;position:relative; width:83%;margin-left:2%;" />
+
As described above, the ideal biosensor is binary and its fluorescence response can only take two values. This relies on the system having two feature- a fast response time to concentration changes and a large amplitude of response. Having previously established the ideal concentrations of DCM and ATC <u>(see above)</u> for the biosensor, our next task was to predict what combination of controllable variables would result in the ideal binary behaviour. This is a very important step in synthetic biology because it allows us to crudely optimise the design before construction even begins. To test the response of our biosensor, we used a step function of DCM the initial and sudden contact of DCM with our bacteria and then removing DCM through <u>spinning the cells(?)</u>. In the real system, the DCM input would be a step in and then a gradual negative ramp as the DCM was degraded.
-
 
+
<br><br>  
-
<img src="https://static.igem.org/mediawiki/2014/8/84/Oxford_Fran_flowchart1.png" style="float:right;position:relative; width:83%;margin-left:2%;" />
+
The two parameters that are most easily changed in the initial production of the bacteria are the RBS strength and the degradation rate.  
-
 
+
<br><br>  
-
<h1>Building pOXON-1</h1><br>
+
Increasing the Ribosome Binding Site (RBS) strength can greatly increase the translation initiation rate, hence resulting in amplified fluorescence. <u>(HOW?) (CORRECT + DETAIL?)</u>
-
<li>The first task in the construction of the pOXON-2-dcmR-mcherry construct was the creation of pOXON-1; pME6010 with tetracycline resistance replaced by kanamycin resistance. (N.B. The KanR gene was amplified with an optimised RBS.)</li><br>
+
<br><br>
-
<li>pOXON-1 was produced using the Gibson assembly method.</li><br>
+
The degradation rate of the fluorescent protein can also be changed by adding degradation tags. <u>(CORRECT + DETAIL?)</u>
-
<h1>Building pOXON-2 and pOXON-2-dcmR</h1><br>
+
-
<li>pOXON-1 was then used as the vector for the insertion of the three gblock  fragment constituting the inducible expression system of dcmR via Gibson assembly.</li><br>
+
-
<li>Upon sequencing of the product, it was determined that the version of the gblock containing the dcmR gene in the construct was actually truncated. This construct with the truncated dcmR is pOXON-2. A second Gibson assembly reaction was used to replace the truncated version with the full length gene also derived from the gblock. The resulting construct was named pOXON-2-dcmR.</li><br>
+
-
<h1>Adding in mCherry</h1><br>
+
-
<li>We then used pOXON-2-dcmR as the vector for the insertion of mCherry downstream of dcmR as a translational fusion by Gibson assembly.</li><br>
+
-
<li>We therefore have a system of expressing dcmR with (pOXON-2-dcmR-mCherry) and without (pOXON-2-dcmR) the mCherry fusion in order to test whether the addition of mCherry affects the action of DcmR. Both will be submitted as BioBricks in the standard pSB1C3 backbone.</li><br>
+
-
<li>All constructs were confirmed by sequencing.</li><br>
+
-
<h1>Building pSRK Gm construct</h1><br>
+
-
<li>Still under construction, we have attempted to make our second construct by inserting the pdcmAsfGFP  gblock into the pSRK Gm vector by Gibson assembly. As this is proving difficult the next approach will be to insert the two components separately and to source the DNA from other sources instead of the gblock. Firstly pdcmA will be amplified from Methylobacterium extorquens DM4 genomic DNA and inserted into the pSRKGm vector. sfGFP will them be amplified from a plasmid already containing it and then added the the pSRKGm-pdcmA construct.</li><br>
+
-
<br><br><br>
+
</div>
</div>
Line 268: Line 282:
<div class="row">
<div class="row">
  <a href="#show5" class="show" id="show5"><div class="wetlab">
  <a href="#show5" class="show" id="show5"><div class="wetlab">
-
<h1white>Why these two plasmid backbones?</h1white>
+
<h1white>Insert biochem here?</h1white>
<img src="https://static.igem.org/mediawiki/2014/4/4d/Oxford_plus-sign-clip-art.png" style="float:right;position:relative; width:2%;" />
<img src="https://static.igem.org/mediawiki/2014/4/4d/Oxford_plus-sign-clip-art.png" style="float:right;position:relative; width:2%;" />
</div></a>
</div></a>
  <a href="#hide5" class="hide" id="hide5"><div class="wetlab">
  <a href="#hide5" class="hide" id="hide5"><div class="wetlab">
-
<h1white>Why these two plasmid backbones?</h1white></div></a>
+
<h1white>Insert biochem here?</h1white></div></a>
  <div class="list">
  <div class="list">
<div class="white_news_block2">
<div class="white_news_block2">
-
<li>The two plasmids are partitioned during cell division by different systems, thus an equal proportion of each plasmid is maintained in each new daughter cell. </li><br> <li>Different antibiotic resistances will allow us to select for cells that have taken up both plasmids by application of both antibiotics.</li><br> <li>The replication origins compatible with E.coli and pseudomonas strains.</li><br> <li>We have used two plasmids so that we can test each part in isolation before transforming them both into the same cell.</li>
+
<h1>Biochemistry...</h1>
 +
Biochem stuff...
</div>
</div>
Line 293: Line 308:
<div class="row">
<div class="row">
-
  <a href="#show6" class="show" id="show6"><div class="wetlab">
+
  <a href="#show6" class="show" id="show6"><div class="modelling">
-
<h1white>Why these two plasmid backbones?</h1white>
+
<h1white>Should we aim for high or low RBS strength?</h1white>
<img src="https://static.igem.org/mediawiki/2014/4/4d/Oxford_plus-sign-clip-art.png" style="float:right;position:relative; width:2%;" />
<img src="https://static.igem.org/mediawiki/2014/4/4d/Oxford_plus-sign-clip-art.png" style="float:right;position:relative; width:2%;" />
</div></a>
</div></a>
-
  <a href="#hide6" class="hide" id="hide6"><div class="wetlab">
+
  <a href="#hide6" class="hide" id="hide6"><div class="modelling">
-
<h1white>Why these two plasmid backbones?</h1white></div></a>
+
<h1white>Should we aim for high or low RBS strength?</h1white></div></a>
  <div class="list">
  <div class="list">
<div class="white_news_block2">
<div class="white_news_block2">
-
<li>The two plasmids are partitioned during cell division by different systems, thus an equal proportion of each plasmid is maintained in each new daughter cell. </li><br> <li>Different antibiotic resistances will allow us to select for cells that have taken up both plasmids by application of both antibiotics.</li><br> <li>The replication origins compatible with E.coli and pseudomonas strains.</li><br> <li>We have used two plasmids so that we can test each part in isolation before transforming them both into the same cell.</li>
 
 +
<img src="https://static.igem.org/mediawiki/2014/e/e8/Oxford_change_RBS_strength.png" style="margin-left:0%; float:right; margin-right:0%; position:relative; width:65%;" />
 +
<div class="white_news_block">
 +
We ran the deterministic model whilst varying the activation rate (see <a href="https://static.igem.org/mediawiki/2014/b/be/Oxford_Equations_explained.png" target="_blank">'where did these equations come from?'</a>) of the sfGFP. The response is shown here:
</div>
</div>
 +
<div class="white_news_block">
 +
<h1>What does this tell us?</h1>
 +
As you can see from this graph, increasing the RBS strength only changes the amplitude of the systems response without affecting the response time of the system. This is highly beneficial for the system.
 +
<br><br>
 +
-->Therefore we will aim for as high an RBS strength as possible in our initial design.
 +
</div>
 +
</div>
  </div>
  </div>
  </div>
  </div>
 +
 +
Line 316: Line 342:
<div class="row">
<div class="row">
  <a href="#show7" class="show" id="show7"><div class="wetlab">
  <a href="#show7" class="show" id="show7"><div class="wetlab">
-
<h1white>Why these two plasmid backbones?</h1white>
+
<h1white>Insert biochem here?</h1white>
<img src="https://static.igem.org/mediawiki/2014/4/4d/Oxford_plus-sign-clip-art.png" style="float:right;position:relative; width:2%;" />
<img src="https://static.igem.org/mediawiki/2014/4/4d/Oxford_plus-sign-clip-art.png" style="float:right;position:relative; width:2%;" />
</div></a>
</div></a>
  <a href="#hide7" class="hide" id="hide7"><div class="wetlab">
  <a href="#hide7" class="hide" id="hide7"><div class="wetlab">
-
<h1white>Why these two plasmid backbones?</h1white></div></a>
+
<h1white>Insert biochem here?</h1white></div></a>
  <div class="list">
  <div class="list">
<div class="white_news_block2">
<div class="white_news_block2">
-
<li>The two plasmids are partitioned during cell division by different systems, thus an equal proportion of each plasmid is maintained in each new daughter cell. </li><br> <li>Different antibiotic resistances will allow us to select for cells that have taken up both plasmids by application of both antibiotics.</li><br> <li>The replication origins compatible with E.coli and pseudomonas strains.</li><br> <li>We have used two plasmids so that we can test each part in isolation before transforming them both into the same cell.</li>
+
<h1>Biochemistry...</h1>
 +
Biochem stuff...
</div>
</div>
Line 340: Line 367:
<div class="row">
<div class="row">
-
  <a href="#show8" class="show" id="show8"><div class="wetlab">
+
  <a href="#show8" class="show" id="show8"><div class="modelling">
-
<h1white>Why these two plasmid backbones?</h1white>
+
<h1white>Should we aim for high or low degradation rate?</h1white>
<img src="https://static.igem.org/mediawiki/2014/4/4d/Oxford_plus-sign-clip-art.png" style="float:right;position:relative; width:2%;" />
<img src="https://static.igem.org/mediawiki/2014/4/4d/Oxford_plus-sign-clip-art.png" style="float:right;position:relative; width:2%;" />
</div></a>
</div></a>
-
  <a href="#hide8" class="hide" id="hide8"><div class="wetlab">
+
  <a href="#hide8" class="hide" id="hide8"><div class="modelling">
-
<h1white>Why these two plasmid backbones?</h1white></div></a>
+
<h1white>Should we aim for high or low degradation rate?</h1white></div></a>
  <div class="list">
  <div class="list">
<div class="white_news_block2">
<div class="white_news_block2">
-
<li>The two plasmids are partitioned during cell division by different systems, thus an equal proportion of each plasmid is maintained in each new daughter cell. </li><br> <li>Different antibiotic resistances will allow us to select for cells that have taken up both plasmids by application of both antibiotics.</li><br> <li>The replication origins compatible with E.coli and pseudomonas strains.</li><br> <li>We have used two plasmids so that we can test each part in isolation before transforming them both into the same cell.</li>
 
 +
<img src="https://static.igem.org/mediawiki/2014/6/67/Oxford_change_degradation_rate.png" style="margin-left:0%; float:right; margin-right:0%; position:relative; width:65%;" />
 +
<div class="white_news_block">
 +
We ran the deterministic model whilst varying the degradation rate (see <a href="https://2014.igem.org/Team:Oxford/biosensor_deterministic_equations">'where did these equations come from?'</a>) of the sfGFP. The response is shown here:
 +
</div>
 +
 +
<div class="white_news_block">
 +
<h1>What does this tell us?</h1>
 +
Changing the degradation rate of the protein is more of a trade-off. As you can see, a higher degradation rate gives a faster response but with a much lower steady state responses
 +
<br><br>
 +
-->We should aim for a low degradation rate to begin with so that we can ensure a detectable level of fluorescence, and then gradually increase the degradation rate to get a faster response.
 +
 +
</div>
</div>
</div>
Line 368: Line 406:
 +
<div class="white_news_block">
 +
<h1>Modelling Summary</h1>
 +
The above results demonstrate well the power of modelling genetic circuits. This approach has allowed us to develop our first construct intelligently and to have some trustworthy predictions on which to develop the rest of our system around. However, as ever, there are limitations, especially in biological systems.
 +
<br><br>
 +
In an ideal world, we would like to have a very high expression rate (for a high steady state amplitude of fluorescence), a high degradation rate (for a fast responding biosensor) and a high copy number of the plasmid in each cell. Conversely though, optimising these parameters puts stress on the cells. This leads to the system not actually being as optimal as the model might have predicted. Here we identify the weakness in preliminary models. We will have to actually develop the bacteria and run the experiments in the lab before we will know if our biosensor will respond this well to the DCM. After this, we will work at creating secondary models which should be able to give more reliable predictions. Ideally we would be able to then make more bacteria and the Engineering-Biochemistry cycle would continue.
 +
</div>
Line 375: Line 419:
-
<div class="white_news_block2">
+
 
 +
 
 +
<div class="white_news_block">
<a href="https://2014.igem.org/Team:Oxford/biosensor_characterisation"><img src="https://static.igem.org/mediawiki/2014/c/ca/Oxford_Characterisation.png" style="float:left;position:relative; width:23%;" /></a>
<a href="https://2014.igem.org/Team:Oxford/biosensor_characterisation"><img src="https://static.igem.org/mediawiki/2014/c/ca/Oxford_Characterisation.png" style="float:left;position:relative; width:23%;" /></a>
<a href="https://2014.igem.org/Team:Oxford/biosensor_realisation"><img src="https://static.igem.org/mediawiki/2014/4/4c/Oxford_Realisation.png" style="float:right;position:relative; width:23%;" /></a>
<a href="https://2014.igem.org/Team:Oxford/biosensor_realisation"><img src="https://static.igem.org/mediawiki/2014/4/4c/Oxford_Realisation.png" style="float:right;position:relative; width:23%;" /></a>
-
<a href="https://2014.igem.org/Team:Oxford/biosensor_construction"><img src="https://static.igem.org/mediawiki/2014/e/ef/Oxford_construction_dark.png" style="float:left;position:relative; width:23%; margin-left: 2.66%" /></a>
+
<a href="https://2014.igem.org/Team:Oxford/biosensor_construction"><img src="https://static.igem.org/mediawiki/2014/a/ae/Oxford_construction.png" style="float:left;position:relative; width:23%; margin-left: 2.66%" /></a>
-
<a href="https://2014.igem.org/Team:Oxford/biosensor_optimisation"><img src="https://static.igem.org/mediawiki/2014/9/93/Oxford_Optimisation.png" style="float:right;position:relative; width:23%; margin-right: 2.66%" /></a>
+
<a href="https://2014.igem.org/Team:Oxford/biosensor_optimisation"><img src="https://static.igem.org/mediawiki/2014/6/6a/Oxford_Optimisation_dark.png" style="float:right;position:relative; width:23%; margin-right: 2.66%" /></a>
<a href="https://2014.igem.org/Team:Oxford/biosensor"><img src="https://static.igem.org/mediawiki/2014/a/a7/Oxford_biosensor_link.png" style="float:left;position:relative;width:50%; margin-top:2%;margin-left:25%;margin-right:25%;" /></a>
<a href="https://2014.igem.org/Team:Oxford/biosensor"><img src="https://static.igem.org/mediawiki/2014/a/a7/Oxford_biosensor_link.png" style="float:left;position:relative;width:50%; margin-top:2%;margin-left:25%;margin-right:25%;" /></a>
-
 
+
<a href="https://2014.igem.org/Team:Oxford/Modelling"><img src="https://static.igem.org/mediawiki/2014/6/6e/Oxford_modelling_homepage_link.png" style="float:left;position:relative; width:50%; margin-top:2%;margin-left:25%;margin-right:25%;" /></a>
<br><br><br>
<br><br><br>
Oxford iGEM 2014
Oxford iGEM 2014
-
 
-
 
-
 
</div>
</div>

Latest revision as of 21:29, 11 October 2014


Optimisation


Introduction: how we constructed our biosensor

In order to be able to use our model and to determine whether DcmR acts as a repressor or activator in the presence of DCM we designed and constructed the following two plasmid system. We primarily used Gibson assembly methods and source most of the necessary DNA from gblocks(synthesised oligonucleotides) we had designed based in the sequenced genome of Methylobacterium DM4. This system will also form the DCM biosensor and will be integrated with an electronic circuit to complement this genetic one:

Insert biochem here?
Insert biochem here?

Biochemistry...

Biochem stuff...
What happens when we change the amount of each input added?
What happens when we change the amount of each input added?

What are these graphs and where did they come from?

Using the bacterial fluorescence models we have built, we predicted the steady-state fluorescence levels of the system in varying levels of DCM and ATC by solving the system of differential equations we produced during the characterization section. The results are illustrated in the 3-dimensional surface plot below. (which system?)

The two 2-dimensional graphs are slices taken from the 3-D plot. In each of these 'slices' we are effectively holding one variable constant (either DCM or ATC) while varying the other.

Producing the 3-dimensional plot was produced by plotting the final fluorescence value from lots of different possible combinations of the two inputs (ATC and DCM). The top graph shows the variation in final fluorescence when DCM is held constant and ATC is varied, the second graph is vice versa.

It is important to understand that these graphs represent the expected steady state level of fluorescence of thousands of different simulations. From this we can select the DCM and ATC concentrations for a specific fluorescence response.

How much of each input should we use to test the biosensor?

An ideal biosensor must be:

• Robust- it must be able to cope with variations in ATC concentration without radically altering the behaviour of the system. This is crucial because we cannot ensure that ATC concentrations throughout all the cells will be uniform in the real system.

The top graph demonstrates this nicely. Beyond a certain threshold value of ATC, there is little change in the fluorescence response predicted - it saturates and maintains a constant level. Practically, this means we have to ensure that the ATC concentrations present in our final system must comfortably exceed this threshold ATC value.

• Sensitive- it must change significantly in low concentrations of DCM. This is vital in order to achieve a response that is as close to binary as possible. The ideal system will have a very sharp decline in fluorescence at a predefined, very low value of DCM. This will ensure that the sensor will clearly indicate when the DCM mixture can be safely disposed of.

From our initial system characterization, we have established that when DCM is not present in the system, there will be no fluorescence response aside from that due to the basal transcription rate. However, the model predicts that when even a small amount of DCM is added and the transient behaviour has stabilized, the fluorescence expressed in the system quickly reaches its saturation value. This corresponds to a highly sensitive biosensor which can effectively only express two fluorescence levels- zero or a predefined maximum. The transition from zero to the maximum saturation value occurs at very low concentrations of DCM.

To summarise, we have established that the inputs to our biosensor should be a constant medium concentration of ATC and a varying concentration of DCM as it is degraded. We should note that the ATC concentration will not value without external influence because the system does not consume ATC and its rate of degradation is negligible.
Insert biochem here?
Insert biochem here?

Biochemistry...

Biochem stuff...
Modelling the biosensor to optimise ’ON’ and ‘OFF’ response
Modelling the biosensor to optimise ’ON’ and ‘OFF’ response
As described above, the ideal biosensor is binary and its fluorescence response can only take two values. This relies on the system having two feature- a fast response time to concentration changes and a large amplitude of response. Having previously established the ideal concentrations of DCM and ATC (see above) for the biosensor, our next task was to predict what combination of controllable variables would result in the ideal binary behaviour. This is a very important step in synthetic biology because it allows us to crudely optimise the design before construction even begins. To test the response of our biosensor, we used a step function of DCM the initial and sudden contact of DCM with our bacteria and then removing DCM through spinning the cells(?). In the real system, the DCM input would be a step in and then a gradual negative ramp as the DCM was degraded.

The two parameters that are most easily changed in the initial production of the bacteria are the RBS strength and the degradation rate.

Increasing the Ribosome Binding Site (RBS) strength can greatly increase the translation initiation rate, hence resulting in amplified fluorescence. (HOW?) (CORRECT + DETAIL?)

The degradation rate of the fluorescent protein can also be changed by adding degradation tags. (CORRECT + DETAIL?)
Insert biochem here?
Insert biochem here?

Biochemistry...

Biochem stuff...
Should we aim for high or low RBS strength?
Should we aim for high or low RBS strength?
We ran the deterministic model whilst varying the activation rate (see 'where did these equations come from?') of the sfGFP. The response is shown here:

What does this tell us?

As you can see from this graph, increasing the RBS strength only changes the amplitude of the systems response without affecting the response time of the system. This is highly beneficial for the system.

-->Therefore we will aim for as high an RBS strength as possible in our initial design.
Insert biochem here?
Insert biochem here?

Biochemistry...

Biochem stuff...
Should we aim for high or low degradation rate?
Should we aim for high or low degradation rate?
We ran the deterministic model whilst varying the degradation rate (see 'where did these equations come from?') of the sfGFP. The response is shown here:

What does this tell us?

Changing the degradation rate of the protein is more of a trade-off. As you can see, a higher degradation rate gives a faster response but with a much lower steady state responses

-->We should aim for a low degradation rate to begin with so that we can ensure a detectable level of fluorescence, and then gradually increase the degradation rate to get a faster response.

Modelling Summary

The above results demonstrate well the power of modelling genetic circuits. This approach has allowed us to develop our first construct intelligently and to have some trustworthy predictions on which to develop the rest of our system around. However, as ever, there are limitations, especially in biological systems.

In an ideal world, we would like to have a very high expression rate (for a high steady state amplitude of fluorescence), a high degradation rate (for a fast responding biosensor) and a high copy number of the plasmid in each cell. Conversely though, optimising these parameters puts stress on the cells. This leads to the system not actually being as optimal as the model might have predicted. Here we identify the weakness in preliminary models. We will have to actually develop the bacteria and run the experiments in the lab before we will know if our biosensor will respond this well to the DCM. After this, we will work at creating secondary models which should be able to give more reliable predictions. Ideally we would be able to then make more bacteria and the Engineering-Biochemistry cycle would continue.



Oxford iGEM 2014