Team:Washington/Protocols

From 2014.igem.org

(Difference between revisions)
 
(132 intermediate revisions not shown)
Line 1: Line 1:
-
{{Template:Team:UW/CSS}}
+
{{Template:Team:UW/CSS}}
 +
<html>
 +
<body>
 +
<h1> <center>Protocols</center> </h1>
 +
 
 +
 
 +
<html> <a name="Media, Buffers and Solutions"></a> </html>
 +
 
 +
 
 +
    <h2> Media, Plates, and Solutions </h2>
 +
 
 +
 
 +
        <h3> Competent Cell Media Buffer (CCMB) </h3>
 +
            <p>
 +
                                Mix the following to a 2 L container:<br>
 +
           
 +
- 100 g glycerol (liquid) <br>
 +
 
 +
                          - 10 mL x 1 M potassium acetate <br>
 +
 
 +
                          - 11.8 g CaCl2*H2O <br>
 +
 
 +
                          - 4 g MnCl2 <br>
 +
 
 +
                          - 2 g MgCl2 <br>
 +
 
 +
                          - 1 L of dH2O <br>
 +
<br>
 +
                       
 +
                          Sterile filter or autoclave in a 1 L bottle
 +
 
 +
        </p>
 +
 
 +
 
 +
        <h3> Super Optimal Broth (SOB) </h3>                   
 +
                        <p>
 +
                                Mix the following to a 2 L container: <br>
 +
 
 +
                     
 +
                             
 +
 
 +
                          - 20 g tryptone <br>
 +
 
 +
                        - 5 g yeast extract <br>
 +
 
 +
                        - 10 mL x 1 M NaCl <br>
 +
 
 +
                          - 2.5 mL x 1 M KCl <br>
 +
 
 +
                          - 1 L of dH2O <br>
 +
 
 +
                      <br>
 +
 
 +
 
 +
                      Sterile filter or autoclave in a 1 L bottle
 +
 
 +
                        </p>
 +
 
 +
 
 +
        <h3> Phosphate Buffered Saline (PBS) Solution </h3>
 +
        <p>
 +
                                Mix the following in a 2 L container or 1 L beaker: <br>
 +
 
 +
     
 +
 
 +
- 8 g NaCl <br>
 +
 
 +
                - 1.44 g Na2HPO4 <br>
 +
 
 +
                - 0.8 g KCl <br>
 +
 
 +
                - 0.24 g KH2PO4 <br>
 +
 
 +
                - 1 L of dH2O <br>
 +
 
 +
                                Buffer to pH 7.4 <br><br>
 +
 
 +
                            Sterile filter or autoclave in a 1 L bottle
 +
 
 +
        </p>
 +
 
 +
 
 +
                      <h3>PBSF (PBS for Flow)</h3>
 +
<p>
 +
 
 +
          Mix the following in a 1 L beaker:
 +
<br>
 +
     
 +
 
 +
  - 25 mL 20X PBS, pH 7.4<br>
 +
 
 +
  - 475 mL H2O<br>
 +
 
 +
  - 2.5 g BSA (0.5%)*
 +
<br><br>
 +
 
 +
Sterile filter in a 1 L bottle and store at 4 °C
 +
 
 +
</p>
 +
 
 +
        <h3> Yeast Extract Peptone Dextrose (YPD) </h3>
 +
<p>
 +
 
 +
                                  Mix the following into 950 mL of dH2O in a 1 L bottle:
 +
<br>
 +
                - 20 g peptone <br>
 +
 
 +
              - 10 g yeast extract
 +
 
 +
<br><br>
 +
 
 +
            Autoclave <br>
 +
 
 +
            Add 50 mL 40% glucose <br>
 +
 
 +
            Sterile filter into a 1 L bottle <br>
 +
 
 +
                    <br>
 +
 
 +
            Note: For long-term liquid media storage, do not add 40% glucose. Instead add the glucose directly into cell cultures. <br>
 +
 
 +
            Note: For YPD-plates add 24 g agar to the peptone and yeast extract before autoclaving. <br>               
 +
 
 +
            </p>
 +
 
 +
 
 +
        <h3> Selective Dropout Media, C-Uracil and C-Histidine (C-Ura and C-His) </h3>
 +
            <p>
 +
 
 +
                Synthesized by the Yeast Resource Center at the University of Washington's
 +
 
 +
                    Department of Genome Sciences and Department of Biochemistry.
 +
 
 +
            </p>
 +
 
 +
 
 +
     
 +
        <h3> Guanidinium Hydrogen Chloride </h3>
 +
            <p>
 +
 
 +
            For maximum effectiveness, final concentration should be approximately 8.5 M in PBS<br>
 +
 
 +
            Add the following to a 500 mL beaker and mix:
 +
 
 +
            </p>
 +
 
 +
            <p>
 +
 
 +
             
 +
                - 203 g guanidinium hydrogen chloride <br>
 +
 
 +
                - 250 mL PBS solution* <br>
 +
 
 +
                - Add dilute HCl to pH 7.4
 +
 
 +
           
 +
 
 +
            </p>
 +
 
 +
            <p>
 +
 
 +
                *It is not necessary to filter or autoclave. <br>
 +
 
 +
            *Alternatively add slightly less than 250 mL of PBS in order to buffer the solution to the appropriate volume, then add more dH2O as necessary.           
 +
 
 +
</p>
 +
 
<html>
<html>
-
<head>
+
<br><a href="#top">Back To Top</a> <br>
-
<style>
+
</html>
-
body  {background-color:white}
+
<html><a name="Basic Cloning"></a>
-
  h1 {color:purple ;
+
</html>
-
font-family:'Lucida Sans Unicode', 'Lucida Grande', sans-serif" ;
+
-
font-size:250%}
+
-
+
-
  h2 {color:purple;
+
-
font-family:'Lucida Sans Unicode', 'Lucida Grande', sans-serif" }
+
-
 
+
-
  h3 {color:purple;
+
-
font-family:'Lucida Sans Unicode', 'Lucida Grande', sans-serif" }
+
-
  p {color:#39275B;
+
    <h2> Basic Cloning </h2>
-
font-family:'Lucida Sans Unicode', 'Lucida Grande', sans-serif" }
+
 
 +
 
 +
        <h3> Polymerase Chain Reaction </h3>
 +
            <p>
 +
 
 +
                All PCRs were done using a standard 50 μL reaction volume with GoTaq® Green Master Mix 2X purchased from PROMEGA Corporation. <br>
 +
 
 +
                Mix the following in a 0.2 mL microcentrifuge tube on ice: <br>
 +
 
 +
                    25 μL GoTaq® Green Master Mix 2X <br>
 +
 
 +
                    1-5 μL of 10 μM forward primer <br>
 +
 
 +
                    1-5 μL of 10 μM reverse primer <br>
 +
 
 +
                    <250 ng of DNA template <br>
 +
 
 +
                    QS 50 μl nuclease-free H2O <br>
 +
 
 +
                Conduct the reaction in a thermocycler, adjusting anneal temperature and extension times accordingly. See your polymerase supplier protocol for more details on thermocycling.
 +
 
 +
            </p>
 +
 
 +
        <h3> Error-prone Polymerase Chain Reaction </h3>
 +
            <p>
 +
 
 +
               
 +
 
 +
                Prepare 50 μL reaction: <br>
 +
 
 +
                5 μL 10X Mutazyme II Rxn Buffer <br>
 +
 
 +
                1 μL 40 mM dNTP mix (200 μM each final) <br>
 +
 
 +
                1 μL 20 μM forward primer <br>
 +
 +
                1 μL 20 μM reverse primer <br>
 +
 
 +
                1 μL Mutazyme II DNA polymerase (2.5 U/μL) <br>
 +
 
 +
                0.01 ng template <br>
 +
 
 +
                QS 50 μL diH2O <br>
 +
 
 +
                <br>
 +
 
 +
                Program thermocycler as follows: <br>
 +
 
 +
                95 °C, 2 min <br>
 +
 +
                95 °C, 30 sec <br>
 +
 
 +
                XX °C*, 30 sec <br>
 +
 
 +
                72 °C, X min** <br>
 +
 
 +
                32 cycles <br>
 +
 
 +
                72 °C, 10 min <br>
 +
 
 +
                4 °C, hold <br>
 +
 
 +
                <br>
 +
 
 +
                *Adjust annealing temperature according to Tm of primer. <br>
 +
 
 +
                **Adjust extension time according to the length of amplified DNA. <br>
 +
 
 +
                <br>
 +
 
 +
                Note: Use 0.01 ng of template (calculate by insert and not by total plasmid). <br>
 +
 
 +
                Calculate amount of template to use as follows: <br>
 +
 
 +
                (bp for amplified region) / (bp in total plasmid) = % amplified region <br>
 +
 
 +
                (conc. of total plasmid) x (% amplified region as a decimal) = conc. of amplified region <br>
 +
 
 +
                Note: Never pipette less than 0.5 μL. <br>
 +
 
 +
                (0.01 ng of template) / (conc. of amplified region) = vol of template to add to PCR  <br>
 +
 
 +
            </p>
 +
 
 +
 
 +
           
 +
 
 +
 
 +
        <h3> Restriction Endonuclease Reaction (Digestion) </h3>
 +
            <p>
 +
 
 +
                All restriction enzyme reactions were done using a 50 μl reaction volume. Restriction enzymes and buffers were purchased from New England Biolabs® Inc. <br>
 +
 
 +
                Mix the following in a 0.2 mL PCR tube: <br>
 +
 
 +
                 
 +
                    1 μg of DNA <br>
 +
 
 +
                    5 μL of the appropriate 10X New England Biolab® Buffer <br>
 +
 
 +
                    1 μL of each restriction enzyme (add last) <br>
 +
 
 +
                    QS 50μL nuclease-free H2O <br>
 +
 
 +
                Incubate the reaction for 1 hr <br>
 +
 
 +
                Heat inactive the reaction at the appropriate temperature <br>
 +
<br>
 +
 
 +
                Note: Thaw the restriction enzyme(s) on ice to improve shelf life. <br>
 +
             
 +
 
 +
            </p>       
 +
 
 +
 
 +
        <h3> Ligation </h3>
 +
            <p>
 +
 
 +
                T4 DNA Ligase and Buffer were purchased from New England Biolabs® Inc. <br>
 +
 
 +
                1. Prepare the following in a 0.2 mL microcentrifuge tube: <br>
 +
 
 +
                    50.0 ng vector DNA* <br>
 +
 
 +
                    37.5 ng vector DNA* <br>
 +
 
 +
                    2 μL 10X T4 DNA Ligase Buffer <br>
 +
 
 +
                    1 μL T4 DNA Ligase <br>
 +
 
 +
                    QS 20 μL diH2O <br>
 +
 
 +
                2. Incubate the reaction at room temperature for 10-30 minutes or at 16 °C overnight. <br>
 +
 
 +
                3. Heat inactivate at 65 °C for 10 minutes. <br>
 +
 
 +
                4. Chill on ice before starting a transformation reaction. <br>
 +
 
 +
<br>
 +
 
 +
                *The exact amount of DNA is dependent on the number of base pairs. In order to conduct a proper reaction consult the New England Biolab Ligation Calculator at:
 +
 
 +
                    http://nebiocalculator.neb.com/#!/
 +
 
 +
            </p>
 +
 
 +
<html>
-
</style>
+
<br><a href="#top">Back To Top</a> <br>
-
</head>
+
</html>
</html>
 +
 +
<html><a name="Escherichia coli Protocols"></a>
 +
 +
</html>
 +
 +
 +
    <h2> <i> Escherichia coli </i> Protocols (XL1-Blue and XL10-Gold) </h2>
 +
 +
 +
        <h3> Chemically Competent Cell Cultures </h3>
 +
            <p>
 +
Competent cells take two days to culture and aliquot. <br>
 +
          Day 1: <br>
 +
                    1. Streak an aliquot of competent cells onto two LB-plates without antibiotics.* <br>
 +
                    2. Incubate at 37 °C overnight. <br>
 +
                Day 2: <br>
 +
                    1. In two 250 mL baffle flasks add 50 mL of SOB media. <br>
 +
                    2. Scrape as many single colonies into either flask. <br>
 +
                    3. Incubate and shake at 37 °C and 250 rpm for 2-3 hours. <br>
 +
                    4. Check the optical density of the cells at 600 nm after 2 hours. <br>
 +
                    5. Stop incubation when cultures reach approximately 0.5 optical density. <br>
 +
                    6. Add the contents of the flask into separate 50 mL flat bottomed centrifuge tubes. <br>
 +
                    7. Spin down the cells at 2500 rpm at 4 °C for 15 minutes. <br>
 +
                    8. Decant the supernatant. <br>
 +
                    9. Resuspend the cells in 16 mL of CCMB by pipetting or gently vortexing. <br>
 +
                      10. Incubate the cells on ice for 20 minutes. <br>
 +
                      11. Spin down the cells at 2500 rpm at 4 °C for 10 minutes. <br>
 +
                      12. Decant the supernatant. <br>
 +
                      13. Resuspend the cells in 4 mL of CCMB. <br>
 +
                      14. Quickly aliquot the cells into 1.7 mL cryogenic vials or 1.5 mL centrifuge tubes.** <br>
 +
                      15. Store the competent cell aliquots at -80 °C. <br>
 +
<br>
 +
                    *Streak in such a way that there should be individual colony growth and no clumps after the incubation. <br>
 +
                    **We did this in a -20 °C cold room and using an automated repeater pipette. The volume of each aliquot depends on the number of transformations you intend to do at a time. <br>
 +
<br>
 +
                    Note: After removing the cells from incubation keep them on ice or as cold as possible. <br>
 +
            </p>
 +
       
 +
 +
        <h3> Chemically Competent Cell Transformations </h3>
 +
            <p>       
 +
                1.  Thaw competent <i> E. coli </i> cells on ice (XL1-Blue or XL10-Gold).* <br>
 +
                2.  Add 50 μL of competent cells to sterile 14 mL culture tube. <br>
 +
                3.  Add 1 μL (~100-200 ng)* of the mini-prep to each culture tube. <br>
 +
                4.  Equilibrate the cells on ice for 10 minutes. <br>
 +
                5.  Heat shock the cells at 42 °C for 30-45 seconds.** <br>
 +
                6.  Immediately place the cells back on ice for 3 minutes. <br>
 +
                7.  Add 250 μL LB media without antibiotics and shake at 250 rpm and 37 °C for 30 minutes. <br>
 +
                8.  Spread 10 μL and 290 μL on an appropriate LB-antibiotic plate. <br>
 +
                9.  Invert the plate and incubate at 37 °C overnight. <br>
 +
<br>
 +
                *The exact amount of DNA to add depends on your cell's transformation efficiency. However, it is acceptable to add a larger amount to increase the number of transformed cells. <br>
 +
                **Do not heat shock for an extended duration as this may damage and/or kill your cells.
 +
 +
            </p>
 +
 +
           
 +
 +
        <h3> Overnights </h3>
 +
            <p>
 +
 +
                1. In a 14 mL round-bottom tube, add 3 mL of LB and 3 μL of 1000X antibiotic(s). <br>
 +
                2. Pick one isolated colony, do not collect satellites or colony clumps, with a pipette tip. <br>
 +
                3. Swirl the colony tip in the tube, there should be no visible cell clumps. <br>
 +
                4. Incubate and shake the tube at 37 °C at 250 rpm for 12-16 hours and no longer than 20 hours. <br>
 +
 +
            </p>
 +
 +
 +
        <h3> DNA Extraction and Mini-Preps </h3>
 +
            <p>
 +
 +
                All DNA Mini-Preps were prepared using EPOCH Mini-Prep Kits and following the supplied protocols.
 +
 +
            </p>
 +
 +
 +
        <h3> Glycerol Stocks </h3>
 +
            <p>
 +
                1. Take 1-2 mL from an overnight culture and transfer into a 1.5 mL centrifuge tube. <br>
 +
                2. Spin down the culture at 3000 rpm for 3 minutes. <br>
 +
                3. Decant the supernatant. <br>
 +
                4. Resuspend the cells in 500 μL of 40% glycerol and 500 μL of LB (no antibiotics) or water. <br>
 +
                5. Transfer the resuspension to a cryogenic vial. <br>
 +
                6. Store the glycerol stock at -80 °C. <br>
 +
 +
 +
            </p>
<html>
<html>
-
<h1> Protocols </h1>
 
-
<h2> Media, Plates and Solutions </h2>
+
<br><a href="#top">Back To Top</a> <br>
 +
</html>
-
<h3><p align="left"> CCMB </p></h3>
+
<html><a name="Saccharomyces cerevisiae"></a>
-
<h3><p align="left"> LB-Agar </p></h3>
+
 
-
<p align="left">
+
</html>
-
10 g tryptone
+
 
-
5 g yeast extract
+
    <h2> <i> Saccharomyces cerevisiae </i> (PyE1 Yeast) </h2>
-
10 g NaCl
+
 
-
15 g agarose
+
 
-
1 Liter diH2O
+
        <h3> Chemically Competent Cell Cultures </h3>
-
Autoclave in two 500 ml bottles (liquid cycle, 20 min)
+
            <p>
 +
 
 +
                This process take four days in lab with a one day wait for incubation. <br>
 +
 
 +
 
 +
                Day 1: <br>
 +
                    1. Streak yeast cells onto a YPD plate.* <br>
 +
                    2. Invert the plate and incubate at 30 °C for 2 days. <br>
 +
 
 +
                Day 3: <br>
 +
                    1. Add 50 mL of YPD liquid media into a 250 mL baffle flask. <br>
 +
                    2. Swipe as many individual colonies as you can see into the YPD media.** <br>
 +
                    3. Incubate and shake the culture at 30 °C at 250 rpm overnight approximately 24 hours. <br>
 +
 
 +
                Day 4: <br>
 +
                    1. Take an optical density measurement. <br>
 +
                    2. In three 250 mL baffle flask add the portions of the overnight liquid culture. <br>
 +
                    3. Dilute each culture to approximately 0.4 optical density with YPD. <br>
 +
                    4. Incubate and shake the cultures at 30 °C at 250 rpm until the optical density reaches 1.2-1.6. <br>
 +
                    5. Collect each culture into separate 50 mL flat-bottomed centrifuge tubes. <br>
 +
                    6. Spin down the cells at 4000 x g for 5 minutes at 4 °C. <br>
 +
                    7. Decant the supernatant. <br>
 +
                    8. Resuspend the cells in 100 mL total for all three culture of dH2O. <br>
 +
                    9. Combine the suspensions into two 50 mL flat-bottomed centrifuge tubes. <br>
 +
                    10. Spin down the cells as above. <br>
 +
                    11. Decant the supernatant. <br>
 +
                    12. Resuspend each in 3 mL of 100 mM lithium acetate. <br>
 +
                    13. Transfer both cultures into a single 15 mL conical centrifuge tube. <br>
 +
                    14. Spin down the cells at 3000 rpm for 5 minutes. <br>
 +
                    15. Resuspend the cells in 0.75 mL of 100 mM lithium acetate, total volume is roughly 2 mL. <br>
 +
                    16. Qualitatively bring up the volume to 3.5 mL by adding 40% glycerol. <br>
 +
                    17. Aliquot the cells into 1.5 mL centrifuge tubes or 1.7 mL cryogenic vials.*** <br>
 +
<br>
 +
                *Streak in such a way that there are individual colonies visible on the plate without clumps or satellite colonies. <br>
 +
                **Collect only individual visible colonies. Do not collect clumps or satellite colonies. <br>
 +
                ***The volume of aliquots depends on the number to transformations you intend to do at a time. <br>
 +
 
 +
 
 +
            </p>
 +
 
 +
       
 +
 
 +
        <h3> Chemically Competent Transformations </h3>
 +
            <p>
 +
 
 +
                This protocol assumes a 50 μL aliquot of yeast competent cells were made. Furthermore, this protocol prepares enough cells for six yeast transformations. <br>
 +
                <br>
 +
                1. Add the following to 50 μL of yeast competent cells: <br>
 +
                    240 μL of polyethylene glycol - 3350 (PEG-3350) <br>
 +
                    36 μL of 1 M lithium acetate <br>
 +
                    32 μL of milliQ H2O <br>
 +
               
 +
                2. Mix the mixture by gently pipetting or vortexing. <br>
 +
                3. Aliquot 59 μL of the mixture into a 0.2 mL microcentrifuge tube. <br>
 +
                4. Add 1 μL (~100-200 ng) of DNA.* <br>
 +
                5. Mix the mixture by gentle pipetting or vortexing. <br>
 +
                6. Incubate the mixture at 30 °C for 30 minutes. <br>
 +
                7. Heat shock the mixture at 42 °C for 20 minutes. <br>
 +
                8. Spin down the cells in a microcentrifuge for ~1 minute. <br>
 +
                9. Decant the supernatant. <br>
 +
                10. Resuspend the cell pellets in 200 μL of dH2O. <br>
 +
                11. Spin down the cells in a microcentrifuge for ~1 minute. <br>
 +
                12. Resuspend the cell pellets in 200 μL of dH2O. <br>
 +
                13. Plate 50-150 μL of the mixture onto an appropriate selective dropout media plate. <br>
 +
                14. Invert and incubate at 30 °C for 2 days. <br>
 +
<br>
 +
                *The exact amount of DNA depends on the transformation efficiency of your competent cells.
 +
 
 +
 
 +
 
 +
            </p>
 +
 
 +
       
 +
 
 +
        <h3> Overnight Culturing </h3>
 +
            <p>
 +
 
 +
                1. In a 14 mL round-bottomed culture tube add 1.8 mL selective dropout media and 0.2 mL 20% glucose. <br>
 +
                2. Swipe 3 isolated yeast colonies and add them to the culture tube media. <br>
 +
                3. Incubate and shake at 37 °C at 250 rpm for 2 days. <br>
 +
<br>
 +
                Note: You can also make 3 mL cultures (2.7 mL S.D. media and 0.3 mL 20% glucose) or larger cultures, just make sure to dilute the glucose from 20% to 2%.
 +
 
 +
            </p>
 +
 
 +
 
 +
        <h3> Culture Passaging </h3>
 +
            <p>
 +
 
 +
                1. In a 14 mL round-bottomed culture tube add 1.8 mL selective dropout media and 0.2 mL 20% glucose. <br>
 +
 
 +
                2. Take 20-50 μL from a previous overnight or passage culture and add it to the culture media.<br>
 +
 
 +
                3. Incubate and shake at 37 °C at 250 rpm for 2 days. <br>
 +
<br>
 +
 
 +
                Note: You can also do 3 mL cultures (2.7 mL S.D. media and 0.3 mL 20% glucose) or larger cultures, just make sure to dilute the glucose from 20% to 2%. <br>
 +
                Note: The exact amount of culture that you take from a previous culture is irrelevant as long as at least one living cell is passaged.
 +
            </p>
 +
 
 +
 
 +
 
 +
               
 +
 
 +
        <h3> Glycerol Stocks </h3>
 +
            <p>
 +
                1. Take 1-2 mL from an overnight culture and transfer into a 1.5 mL centrifuge tube. <br>
 +
                2. Spin down the culture at 3000 rpm for 3 minutes. <br>
 +
                3. Decant the supernatant. <br>
 +
                4. Resuspend the cells in 500 μL of 40% glycerol and 500 μL of selective dropout media or water. <br>
 +
                5. Transfer the resuspension to a cryogenic vial. <br>
 +
                6. Store the glycerol stock at -80 °C. <br>
 +
 
 +
 
 +
            </p>
 +
 
 +
<html>
 +
 
 +
<br><a href="#top">Back To Top</a> <br>
 +
</html>
 +
 
 +
<html><a name="Flow Cytometry"></a>
 +
 
 +
</html>
 +
 
 +
    <h2> Flow Cytometry </h2>
 +
 
 +
 
 +
        <h3> Dilutions </h3>
 +
            <p>
 +
                1. From an overnight culture measure the optical density at 660 nm by making 1:10 dilutions. <br>
 +
                2. Take enough culture to make a 1 mL aliquot with an OD of 0.4. <br>
 +
                3. Spin down the aliquot in a 1.5 mL centrifuge tube at 3000 rpm for 3 minutes. <br>
 +
                4. Decant the supernatant. <br>
 +
                5. Resuspend the cell pellet in 800 μL of the appropriate selective dropout media and 200 μL of 20% glucose. <br>
 +
                6. Transfer the new culture to a 14 mL culture tube. <br>
 +
                7. Incubate and shake at 30 °C and 250 rpm for at least 6 hours (1.2-1.6 optical density).
 +
 
 +
            </p>
 +
 
 +
 
 +
        <h3> Preparations for Analysis using C6 Accuri Flow Cytometer </h3>
 +
            <p>
 +
                1. From the dilution previously made, measure the optical density, roughly 1.2-1.6. <br>
 +
                2. Make an aliquot of 500 μL of the dilution culture in a 1.5 mL centrifuge tube. <br>
 +
                3. Spin down the aliquot at 3000 rpm for 3 minutes. <br>
 +
                4. Decant the supernatant. <br>
 +
                5. Resuspend the cell pellet in 500 μL of PBSF. <br>
 +
                6. Spin down the resuspension at 3000 rpm for 3 minutes. <br>
 +
                7. Decant the supernatant. <br>
 +
                8. Resuspend the cell pellet in another 500 μL of PBSF.* <br>
 +
                9. Prepare the C6 Accuri Flow Cytometer by running a backflush cycle and a diH2O cycle. <br>
 +
                10. Load the sample onto the sip. <br>
 +
                11. Run the sample with 100,000 cell count. <br>
 +
                12. Repeat for all samples and make sure to change data cells otherwise the old data will be erased. <br>
 +
                13. Once finished, run a cleaning cycle with Accuri approved cleaning solution, then run a diH2O cycle. <br>
 +
<br>       
 +
                *For special cases do not resuspend all samples, instead resuspend immediately before running the sample through the flow cytometer.
 +
 
 +
 
 +
            </p>
 +
<html>
 +
 
 +
<br><a href="#top">Back To Top</a> <br>
 +
</html>
 +
 
 +
<html><a name="Fluorescence-Activated Cell Sorting"></a>
 +
 
 +
</html>
 +
 
 +
    <h2> Fluorescence-Activated Cell Sorting </h2>
 +
 
 +
       
 +
      <h3>Dilution of Cells:</h3>
 +
 +
<p>
 +
1. Take OD600 of the cultures.<br>
 +
2. Calculate volume to spin down for OD of 0.4 in appropriate volume (typically 1 mL) - C1V1=C2V2 <br>
 +
3. Spin down appropriate volume in eppendorf tubes for 3 min at 3000 rpm.<br>
 +
4. Aspirate off supernatant.<br>
 +
5. Resuspend pellet in 1 mL C-Ura + 2% glucose (or other appropriate media).<br>
 +
6. Shake in 14 mL culture tube at 30 °C for 6 hrs. <br>
</p>
</p>
-
<h3><p align="left"> Luria Broth </p></h3>
+
<h3>Sample Prep:</h3>
-
<p align="left">
+
 
-
6.25 g LB mix
+
<p>
-
250 ml diH2O
+
1. Transfer 500 μL of samples and negative control to eppendorf tubes.<br>
-
Autoclave in 500 ml bottle (liquid cycle, 20 min)
+
2. Spin down cells (3000 rpm, 3 min). <br>
 +
3. Aspirate off supernatant. Resuspend in PBSF. <br>
 +
4. Spin down cells (3000 rpm, 3 min).<br>
 +
5. Aspirate off supernatant. Resuspend in PBSF.<br>
 +
</p>
 +
 
 +
<h3>Using the Fluorescence-Activated Cell Sorter</h3>
 +
<p>
 +
 +
1. Load the “iGEM Template” file in the FACS Software.<br>
 +
2. Make sure the stream is stable.<br>
 +
3. Run all controls and record 100,000 events for analysis. <br>
 +
4. While running controls, set FSC/SSC and FSC-H/FSC-W gates.<br>
 +
5. Run library and record 100,000 events for analysis.<br>
 +
6. Set gate for top 1.00% of GFP fluorescence.<br>
 +
7. Sort cells falling in all three gates. Sort ten-fold over library size.<br>
 +
8. Run bleach and diH2O through FACS to avoid cross-contamination.<br>
 +
 
 +
    </p>
 +
 
 +
 
 +
<html><a name="Protein Expression"></a>
 +
 
 +
</html>
 +
 
 +
<html>
 +
 
 +
<br><a href="#top">Back To Top</a> <br>
 +
</html>
 +
 
 +
    <h2> Protein Expression </h2>
 +
 
 +
 
 +
        <h3> Overnight Cultures </h3>
 +
 
 +
<p>
 +
 
 +
1. Add 25 mL TB and 25 μL 1000X Kan to a 250 mL baffled flask. <br>
 +
2. Stab a glycerol stock with a P1000 pipette and swirl in the flask of media. <br>
 +
3. Put flask in 37 °C shaker at 250 rpm for 16-20 hrs.<br>
 +
 
 +
 
</p>
</p>
-
<h3><p align="left"> Super Optimal Broth (S.O.B.) </p></h3>
+
 
-
<p align="left"> </p>
+
                <h3> Protein Expression </h3>
-
<h3><p align="left"> Guanidinium Hydrogen Chloride </p> </h3>
+
 
-
<p align="left"> </p>
+
<p>  
-
                <h3><p align="left"> TB </p> </h3>
+
 
-
<p align="left">  
+
1. Add 500 μL 1000X Kanamycin and 1 mL MgSO4 to 500 mL TB in 2 L baffled flask. <br>
-
500mL milliQ filtered water
+
2. Transfer 10 mL overnight culture to TB. <br>
-
6g BactoTryptone
+
3. Shake at 37 °C and 250 rpm until OD600 is between 0.5 and 0.8. <br>
-
12g Yeast Extract
+
4. Allow flask to rest at room temp for 30 min. <br>
-
2mL glycerol
+
5. Add 125 μL 1 M IPTG. <br>
 +
6. Shake flask at 18 °C for ~16-20 hrs.
 +
 
</p>
</p>
-
<p align="left"> </p>
 
-
<h3><p align="left"> YPD </p></h3>
 
-
<p align="left"> </p>
 
-
<h3><p align="left"> Yeast Liquid Cultures </p></h3>
 
-
<p align="left"> </p>
 
-
<h3><p align="left"> PBSF </p></h3>
 
-
<p align="left"> </p>
 
-
<h2> Basic Cloning </h2>
+
        <h3> Protein Extraction and Purification </h3>
-
+
 
-
<h3><p align="left"> Polymerase Chain Reaction (PCR) </p></h3>
+
<p>
-
<p align="left"> </p>
+
1. Transfer cell culture to centrifuge tube. <br>
-
<h3><p align="left"> Restriction Endonuclease Reaction (Digestion) </p></h3>
+
2. Centrifuge culture at 4000 x g for 10 min. <br>
-
<p align="left"> </p>
+
3. Discard supernatant. <br>
-
<h3><p align="left"> Ligation </p></h3>
+
4. Resuspend pellet in 25 mL wash buffer and add 250 μL of 100X PMSF, 250 μL of 100 mg/mL lysozyme, and 250 μL of 10 mg/mL DNAse. <br>
-
<p align="left"> </p>
+
5. Sonicate sample with 0.25 inch probe for 5 min at 70% amplitude with 20 sec on and off pulses. <br>
 +
6. Take 50 μL total sample. <br>
 +
7. Transfer lysate to SS-34 centrifuge tube. <br>
 +
8. Centrifuge for 30 min at 18000 x g. <br>
 +
9. Take 50 μL soluble sample.
-
<h2> <i> Escherichia coli </i> Protocols (XL1-Blue and XL10-Gold) </h2>
 
-
<h3><p align="left"> Competent Cell Culturing </p></h3>
 
-
<p align="left"> </p>
 
-
<h3><p align="left"> Competent Cell Transformations </p></h3>
 
-
<p align="left">
 
-
1.  Thaw competent E.coli cells on ice (XL1-Blue for cloning) <br>
 
-
2.  Add 50 uL of competent cells to sterile 14 mL Falcon culture tubes <br>
 
-
3.  Add 1 uL of the miniprep to each culture tube <br>
 
-
4.  Equilibrate the cells on ice for 10 min <br>
 
-
5.  Heat shock the cells at 42C for 30-45 seconds <br>
 
-
6.  Immediately place the cells back on ice for 3 min <br>
 
-
7.  Add 250 uL LB media and shake at 250 rpm and 37C for 30 min <br>
 
-
8.  Plate 10 ul and 290 ul of the recovered cells onto LB-agar plates supplemented with appropriate antibiotics <br>
 
-
9.  Invert and incubate at 37C overnight
 
</p>
</p>
-
<h3><p align="left"> Plating </p></h3>
 
-
<p align="left"> </p>
 
-
<h3><p align="left"> Overnights </p></h3>
 
-
<p align="left"> </p>
 
-
<h3><p align="left"> DNA-Extraction and mini-preps </p></h3>
 
-
<p align="left"> </p>
 
-
<h3><p align="left"> Glycerol Stocks </p></h3>
 
-
<p align="left"> </p>
 
-
<h2> <i> Saccharomyces cerevisiae </i> (PYE1 Yeast) </h2>
 
-
<h3><p align="left"> Transformations </p></h3>
+
        <h3> Nickel Nitrotriacetic Acid Chromatography (Nickel-NTA Chromatography) </h3>
-
<p align="left"> </p>
+
-
<h3><p align="left"> Overnight Culturing and Passaging </p></h3>
+
-
<p align="left"> </p>
+
-
<h3><p align="left"> Glycerol Stocks </p></h3>
+
-
<p align="left"> </p>
+
-
<h2> Flow Cytometry and Fluorescence Activated Cell Sorting </h2>
+
<p>
-
<h3><p align="left"> Dilutions </p></h3>
+
1. Add 5 mL 50%(v/v) nickel resin in ethanol to a 25 mL gravity flow column and allow to settle to 2.5 mL(CV). <br>
-
<p align="left"> </p>
+
2. Rinse with 10CV dH2O. <br>
-
<h3><p align="left"> Final Preparations </p></h3>
+
3. Equilibrate with 10CV lysis buffer. <br>
-
<p align="left"> </p>
+
4. Load sample onto column. <br>
 +
5. Wash column with 15CV lysis buffer. <br>
 +
6. Perform 2 additional wash steps with 15CV. <br>
 +
7. Elute sample in 10CV elution buffer and collect eluate. <br>
 +
8. Take 50 μL pure sample.
-
<h2> Protein Expression </h2>
+
</p>
 +
 
 +
        <h3> Size Exclusion Chromatography (SEC) </h3>
 +
<p>
 +
1. Concentrate sample to as high as possible without inducing protein aggregation.<br>
 +
2. Pre-equilibrate Superdex 75 column with 48 mL PBS. <br>
 +
3. Inject 500 μL sample onto column. <br>
 +
4. Run 36 mL PBS through column at 0.5 mL/min, collecting 1 mL fractions. <br>
 +
5. Verify presence of protein in fractions by measuring concentration on Nanodrop and running SDS-PAGE (15 kDa protein should elute at ~13 mL).<br>
 +
6. Pool fractions containing protein.
-
<h3><p align="left"> Overnight Cultures </p></h3>
 
-
<p align="left">
 
-
1.  In a beveled flask mix: </br>
 
-
    3mL TB </br>
 
-
    3uL Kanamycin </br>
 
-
2.  Add cells by stabbing glycerol stock with p1000 pipette and swirling in solution </br>
 
-
3.  Shake at 37C overnight
 
</p>
</p>
-
<h3><p align="left"> Protein Expression </p></h3>
 
-
<p align="left">
 
-
</p>
+
<html>
-
<h3><p align="left"> Protein Extraction and Purification </p></h3>
+
-
<p align="left">  
+
 +
<br><a href="#top">Back To Top</a> <br>
 +
</html>
 +
 +
<html><a name="Stability Analysis"></a>
 +
 +
</html>
 +
 +
    <h2> Stability Analysis </h2>
 +
 +
 +
        <h3> Circular Dichroism: Wavelength Scan </h3>
 +
<p>
 +
1. Load 1mm cuvette with 400 μL protein solution onto CD. <br>
 +
2. Take wavelength scan: <br>
 +
    260 nm-190 nm <br>
 +
    sample every 1 nm <br>
 +
    averaging time 3 sec <br>
 +
    1 scan <br>
 +
    step scan <br>
 +
    25 °C <br>
 +
3. Record wavelength which gives strongest signal (222 nm).
</p>
</p>
-
<h3><p align="left"> Nickel Nitrotriacetic Acid Chromatography </p></h3>
 
-
<p align="left"> </p>
 
-
<h3><p align="left"> Size Exclusion Chromatography (S.E.C.) </p></h3>
 
-
<p align="left"> </p>
 
-
<h2> Stability Analysis </h2>
+
<h3> Circular Dichroism: Guanidine Melt </h3>
 +
<p>
 +
1. Load 1 cm cuvette containing 1.996 mL of 0.05 mg/mL protein solution and stirrer onto CD. <br>
 +
2. Prepare 8 mL of 0.05 mg/mL protein in concentrated guanidine solution. <br>
 +
3. Set up Automixer with guanidine solution on one syringe and waste tube on other syringe. <br>
 +
4. Titrate up to 6 M guanidine, taking a CD measurement at 222 nm every 0.15 M interval. <br>
 +
5. Also measure the fluorescence at 280 nm to ensure the total protein concentration is not changing.
 +
 
 +
</p>
 +
 
 +
 
 +
 
 +
<html>
-
<h3><p align="left"> Thermal Melts </p></h3>
+
<a href="#top">Back To Top</a>
-
<p align="left"> </p>
+
-
<h3><p align="left"> Guanidinium Hydrogen Chloride Melts </p></h3>
+
-
<p align="left"> </p>
+
</html>
</html>

Latest revision as of 03:40, 18 October 2014



UW Homepage Official iGEM website

Protocols


Contents

Media, Plates, and Solutions


Competent Cell Media Buffer (CCMB)

Mix the following to a 2 L container:
- 100 g glycerol (liquid)
- 10 mL x 1 M potassium acetate
- 11.8 g CaCl2*H2O
- 4 g MnCl2
- 2 g MgCl2
- 1 L of dH2O

Sterile filter or autoclave in a 1 L bottle


Super Optimal Broth (SOB)

Mix the following to a 2 L container:
- 20 g tryptone
- 5 g yeast extract
- 10 mL x 1 M NaCl
- 2.5 mL x 1 M KCl
- 1 L of dH2O

Sterile filter or autoclave in a 1 L bottle


Phosphate Buffered Saline (PBS) Solution

Mix the following in a 2 L container or 1 L beaker:
- 8 g NaCl
- 1.44 g Na2HPO4
- 0.8 g KCl
- 0.24 g KH2PO4
- 1 L of dH2O
Buffer to pH 7.4

Sterile filter or autoclave in a 1 L bottle


PBSF (PBS for Flow)

Mix the following in a 1 L beaker:
- 25 mL 20X PBS, pH 7.4
- 475 mL H2O
- 2.5 g BSA (0.5%)*

Sterile filter in a 1 L bottle and store at 4 °C

Yeast Extract Peptone Dextrose (YPD)

Mix the following into 950 mL of dH2O in a 1 L bottle:
- 20 g peptone
- 10 g yeast extract

Autoclave
Add 50 mL 40% glucose
Sterile filter into a 1 L bottle

Note: For long-term liquid media storage, do not add 40% glucose. Instead add the glucose directly into cell cultures.
Note: For YPD-plates add 24 g agar to the peptone and yeast extract before autoclaving.


Selective Dropout Media, C-Uracil and C-Histidine (C-Ura and C-His)

Synthesized by the Yeast Resource Center at the University of Washington's Department of Genome Sciences and Department of Biochemistry.


Guanidinium Hydrogen Chloride

For maximum effectiveness, final concentration should be approximately 8.5 M in PBS
Add the following to a 500 mL beaker and mix:

- 203 g guanidinium hydrogen chloride
- 250 mL PBS solution*
- Add dilute HCl to pH 7.4

*It is not necessary to filter or autoclave.
*Alternatively add slightly less than 250 mL of PBS in order to buffer the solution to the appropriate volume, then add more dH2O as necessary.



Back To Top

Basic Cloning


Polymerase Chain Reaction

All PCRs were done using a standard 50 μL reaction volume with GoTaq® Green Master Mix 2X purchased from PROMEGA Corporation.
Mix the following in a 0.2 mL microcentrifuge tube on ice:
25 μL GoTaq® Green Master Mix 2X
1-5 μL of 10 μM forward primer
1-5 μL of 10 μM reverse primer
<250 ng of DNA template
QS 50 μl nuclease-free H2O
Conduct the reaction in a thermocycler, adjusting anneal temperature and extension times accordingly. See your polymerase supplier protocol for more details on thermocycling.

Error-prone Polymerase Chain Reaction

Prepare 50 μL reaction:
5 μL 10X Mutazyme II Rxn Buffer
1 μL 40 mM dNTP mix (200 μM each final)
1 μL 20 μM forward primer
1 μL 20 μM reverse primer
1 μL Mutazyme II DNA polymerase (2.5 U/μL)
0.01 ng template
QS 50 μL diH2O

Program thermocycler as follows:
95 °C, 2 min
95 °C, 30 sec
XX °C*, 30 sec
72 °C, X min**
32 cycles
72 °C, 10 min
4 °C, hold

*Adjust annealing temperature according to Tm of primer.
**Adjust extension time according to the length of amplified DNA.

Note: Use 0.01 ng of template (calculate by insert and not by total plasmid).
Calculate amount of template to use as follows:
(bp for amplified region) / (bp in total plasmid) = % amplified region
(conc. of total plasmid) x (% amplified region as a decimal) = conc. of amplified region
Note: Never pipette less than 0.5 μL.
(0.01 ng of template) / (conc. of amplified region) = vol of template to add to PCR



Restriction Endonuclease Reaction (Digestion)

All restriction enzyme reactions were done using a 50 μl reaction volume. Restriction enzymes and buffers were purchased from New England Biolabs® Inc.
Mix the following in a 0.2 mL PCR tube:
1 μg of DNA
5 μL of the appropriate 10X New England Biolab® Buffer
1 μL of each restriction enzyme (add last)
QS 50μL nuclease-free H2O
Incubate the reaction for 1 hr
Heat inactive the reaction at the appropriate temperature

Note: Thaw the restriction enzyme(s) on ice to improve shelf life.


Ligation

T4 DNA Ligase and Buffer were purchased from New England Biolabs® Inc.
1. Prepare the following in a 0.2 mL microcentrifuge tube:
50.0 ng vector DNA*
37.5 ng vector DNA*
2 μL 10X T4 DNA Ligase Buffer
1 μL T4 DNA Ligase
QS 20 μL diH2O
2. Incubate the reaction at room temperature for 10-30 minutes or at 16 °C overnight.
3. Heat inactivate at 65 °C for 10 minutes.
4. Chill on ice before starting a transformation reaction.

*The exact amount of DNA is dependent on the number of base pairs. In order to conduct a proper reaction consult the New England Biolab Ligation Calculator at: http://nebiocalculator.neb.com/#!/


Back To Top


Escherichia coli Protocols (XL1-Blue and XL10-Gold)


Chemically Competent Cell Cultures

Competent cells take two days to culture and aliquot.
Day 1:
1. Streak an aliquot of competent cells onto two LB-plates without antibiotics.*
2. Incubate at 37 °C overnight.
Day 2:
1. In two 250 mL baffle flasks add 50 mL of SOB media.
2. Scrape as many single colonies into either flask.
3. Incubate and shake at 37 °C and 250 rpm for 2-3 hours.
4. Check the optical density of the cells at 600 nm after 2 hours.
5. Stop incubation when cultures reach approximately 0.5 optical density.
6. Add the contents of the flask into separate 50 mL flat bottomed centrifuge tubes.
7. Spin down the cells at 2500 rpm at 4 °C for 15 minutes.
8. Decant the supernatant.
9. Resuspend the cells in 16 mL of CCMB by pipetting or gently vortexing.
10. Incubate the cells on ice for 20 minutes.
11. Spin down the cells at 2500 rpm at 4 °C for 10 minutes.
12. Decant the supernatant.
13. Resuspend the cells in 4 mL of CCMB.
14. Quickly aliquot the cells into 1.7 mL cryogenic vials or 1.5 mL centrifuge tubes.**
15. Store the competent cell aliquots at -80 °C.

*Streak in such a way that there should be individual colony growth and no clumps after the incubation.
**We did this in a -20 °C cold room and using an automated repeater pipette. The volume of each aliquot depends on the number of transformations you intend to do at a time.

Note: After removing the cells from incubation keep them on ice or as cold as possible.


Chemically Competent Cell Transformations

1. Thaw competent E. coli cells on ice (XL1-Blue or XL10-Gold).*
2. Add 50 μL of competent cells to sterile 14 mL culture tube.
3. Add 1 μL (~100-200 ng)* of the mini-prep to each culture tube.
4. Equilibrate the cells on ice for 10 minutes.
5. Heat shock the cells at 42 °C for 30-45 seconds.**
6. Immediately place the cells back on ice for 3 minutes.
7. Add 250 μL LB media without antibiotics and shake at 250 rpm and 37 °C for 30 minutes.
8. Spread 10 μL and 290 μL on an appropriate LB-antibiotic plate.
9. Invert the plate and incubate at 37 °C overnight.

*The exact amount of DNA to add depends on your cell's transformation efficiency. However, it is acceptable to add a larger amount to increase the number of transformed cells.
**Do not heat shock for an extended duration as this may damage and/or kill your cells.


Overnights

1. In a 14 mL round-bottom tube, add 3 mL of LB and 3 μL of 1000X antibiotic(s).
2. Pick one isolated colony, do not collect satellites or colony clumps, with a pipette tip.
3. Swirl the colony tip in the tube, there should be no visible cell clumps.
4. Incubate and shake the tube at 37 °C at 250 rpm for 12-16 hours and no longer than 20 hours.


DNA Extraction and Mini-Preps

All DNA Mini-Preps were prepared using EPOCH Mini-Prep Kits and following the supplied protocols.


Glycerol Stocks

1. Take 1-2 mL from an overnight culture and transfer into a 1.5 mL centrifuge tube.
2. Spin down the culture at 3000 rpm for 3 minutes.
3. Decant the supernatant.
4. Resuspend the cells in 500 μL of 40% glycerol and 500 μL of LB (no antibiotics) or water.
5. Transfer the resuspension to a cryogenic vial.
6. Store the glycerol stock at -80 °C.


Back To Top

Saccharomyces cerevisiae (PyE1 Yeast)


Chemically Competent Cell Cultures

This process take four days in lab with a one day wait for incubation.
Day 1:
1. Streak yeast cells onto a YPD plate.*
2. Invert the plate and incubate at 30 °C for 2 days.
Day 3:
1. Add 50 mL of YPD liquid media into a 250 mL baffle flask.
2. Swipe as many individual colonies as you can see into the YPD media.**
3. Incubate and shake the culture at 30 °C at 250 rpm overnight approximately 24 hours.
Day 4:
1. Take an optical density measurement.
2. In three 250 mL baffle flask add the portions of the overnight liquid culture.
3. Dilute each culture to approximately 0.4 optical density with YPD.
4. Incubate and shake the cultures at 30 °C at 250 rpm until the optical density reaches 1.2-1.6.
5. Collect each culture into separate 50 mL flat-bottomed centrifuge tubes.
6. Spin down the cells at 4000 x g for 5 minutes at 4 °C.
7. Decant the supernatant.
8. Resuspend the cells in 100 mL total for all three culture of dH2O.
9. Combine the suspensions into two 50 mL flat-bottomed centrifuge tubes.
10. Spin down the cells as above.
11. Decant the supernatant.
12. Resuspend each in 3 mL of 100 mM lithium acetate.
13. Transfer both cultures into a single 15 mL conical centrifuge tube.
14. Spin down the cells at 3000 rpm for 5 minutes.
15. Resuspend the cells in 0.75 mL of 100 mM lithium acetate, total volume is roughly 2 mL.
16. Qualitatively bring up the volume to 3.5 mL by adding 40% glycerol.
17. Aliquot the cells into 1.5 mL centrifuge tubes or 1.7 mL cryogenic vials.***

*Streak in such a way that there are individual colonies visible on the plate without clumps or satellite colonies.
**Collect only individual visible colonies. Do not collect clumps or satellite colonies.
***The volume of aliquots depends on the number to transformations you intend to do at a time.


Chemically Competent Transformations

This protocol assumes a 50 μL aliquot of yeast competent cells were made. Furthermore, this protocol prepares enough cells for six yeast transformations.

1. Add the following to 50 μL of yeast competent cells:
240 μL of polyethylene glycol - 3350 (PEG-3350)
36 μL of 1 M lithium acetate
32 μL of milliQ H2O
2. Mix the mixture by gently pipetting or vortexing.
3. Aliquot 59 μL of the mixture into a 0.2 mL microcentrifuge tube.
4. Add 1 μL (~100-200 ng) of DNA.*
5. Mix the mixture by gentle pipetting or vortexing.
6. Incubate the mixture at 30 °C for 30 minutes.
7. Heat shock the mixture at 42 °C for 20 minutes.
8. Spin down the cells in a microcentrifuge for ~1 minute.
9. Decant the supernatant.
10. Resuspend the cell pellets in 200 μL of dH2O.
11. Spin down the cells in a microcentrifuge for ~1 minute.
12. Resuspend the cell pellets in 200 μL of dH2O.
13. Plate 50-150 μL of the mixture onto an appropriate selective dropout media plate.
14. Invert and incubate at 30 °C for 2 days.

*The exact amount of DNA depends on the transformation efficiency of your competent cells.


Overnight Culturing

1. In a 14 mL round-bottomed culture tube add 1.8 mL selective dropout media and 0.2 mL 20% glucose.
2. Swipe 3 isolated yeast colonies and add them to the culture tube media.
3. Incubate and shake at 37 °C at 250 rpm for 2 days.

Note: You can also make 3 mL cultures (2.7 mL S.D. media and 0.3 mL 20% glucose) or larger cultures, just make sure to dilute the glucose from 20% to 2%.


Culture Passaging

1. In a 14 mL round-bottomed culture tube add 1.8 mL selective dropout media and 0.2 mL 20% glucose.
2. Take 20-50 μL from a previous overnight or passage culture and add it to the culture media.
3. Incubate and shake at 37 °C at 250 rpm for 2 days.

Note: You can also do 3 mL cultures (2.7 mL S.D. media and 0.3 mL 20% glucose) or larger cultures, just make sure to dilute the glucose from 20% to 2%.
Note: The exact amount of culture that you take from a previous culture is irrelevant as long as at least one living cell is passaged.



Glycerol Stocks

1. Take 1-2 mL from an overnight culture and transfer into a 1.5 mL centrifuge tube.
2. Spin down the culture at 3000 rpm for 3 minutes.
3. Decant the supernatant.
4. Resuspend the cells in 500 μL of 40% glycerol and 500 μL of selective dropout media or water.
5. Transfer the resuspension to a cryogenic vial.
6. Store the glycerol stock at -80 °C.


Back To Top

Flow Cytometry


Dilutions

1. From an overnight culture measure the optical density at 660 nm by making 1:10 dilutions.
2. Take enough culture to make a 1 mL aliquot with an OD of 0.4.
3. Spin down the aliquot in a 1.5 mL centrifuge tube at 3000 rpm for 3 minutes.
4. Decant the supernatant.
5. Resuspend the cell pellet in 800 μL of the appropriate selective dropout media and 200 μL of 20% glucose.
6. Transfer the new culture to a 14 mL culture tube.
7. Incubate and shake at 30 °C and 250 rpm for at least 6 hours (1.2-1.6 optical density).


Preparations for Analysis using C6 Accuri Flow Cytometer

1. From the dilution previously made, measure the optical density, roughly 1.2-1.6.
2. Make an aliquot of 500 μL of the dilution culture in a 1.5 mL centrifuge tube.
3. Spin down the aliquot at 3000 rpm for 3 minutes.
4. Decant the supernatant.
5. Resuspend the cell pellet in 500 μL of PBSF.
6. Spin down the resuspension at 3000 rpm for 3 minutes.
7. Decant the supernatant.
8. Resuspend the cell pellet in another 500 μL of PBSF.*
9. Prepare the C6 Accuri Flow Cytometer by running a backflush cycle and a diH2O cycle.
10. Load the sample onto the sip.
11. Run the sample with 100,000 cell count.
12. Repeat for all samples and make sure to change data cells otherwise the old data will be erased.
13. Once finished, run a cleaning cycle with Accuri approved cleaning solution, then run a diH2O cycle.

*For special cases do not resuspend all samples, instead resuspend immediately before running the sample through the flow cytometer.


Back To Top

Fluorescence-Activated Cell Sorting


Dilution of Cells:

1. Take OD600 of the cultures.
2. Calculate volume to spin down for OD of 0.4 in appropriate volume (typically 1 mL) - C1V1=C2V2
3. Spin down appropriate volume in eppendorf tubes for 3 min at 3000 rpm.
4. Aspirate off supernatant.
5. Resuspend pellet in 1 mL C-Ura + 2% glucose (or other appropriate media).
6. Shake in 14 mL culture tube at 30 °C for 6 hrs.

Sample Prep:

1. Transfer 500 μL of samples and negative control to eppendorf tubes.
2. Spin down cells (3000 rpm, 3 min).
3. Aspirate off supernatant. Resuspend in PBSF.
4. Spin down cells (3000 rpm, 3 min).
5. Aspirate off supernatant. Resuspend in PBSF.

Using the Fluorescence-Activated Cell Sorter

1. Load the “iGEM Template” file in the FACS Software.
2. Make sure the stream is stable.
3. Run all controls and record 100,000 events for analysis.
4. While running controls, set FSC/SSC and FSC-H/FSC-W gates.
5. Run library and record 100,000 events for analysis.
6. Set gate for top 1.00% of GFP fluorescence.
7. Sort cells falling in all three gates. Sort ten-fold over library size.
8. Run bleach and diH2O through FACS to avoid cross-contamination.



Back To Top

Protein Expression


Overnight Cultures

1. Add 25 mL TB and 25 μL 1000X Kan to a 250 mL baffled flask.
2. Stab a glycerol stock with a P1000 pipette and swirl in the flask of media.
3. Put flask in 37 °C shaker at 250 rpm for 16-20 hrs.

Protein Expression

1. Add 500 μL 1000X Kanamycin and 1 mL MgSO4 to 500 mL TB in 2 L baffled flask.
2. Transfer 10 mL overnight culture to TB.
3. Shake at 37 °C and 250 rpm until OD600 is between 0.5 and 0.8.
4. Allow flask to rest at room temp for 30 min.
5. Add 125 μL 1 M IPTG.
6. Shake flask at 18 °C for ~16-20 hrs.

Protein Extraction and Purification

1. Transfer cell culture to centrifuge tube.
2. Centrifuge culture at 4000 x g for 10 min.
3. Discard supernatant.
4. Resuspend pellet in 25 mL wash buffer and add 250 μL of 100X PMSF, 250 μL of 100 mg/mL lysozyme, and 250 μL of 10 mg/mL DNAse.
5. Sonicate sample with 0.25 inch probe for 5 min at 70% amplitude with 20 sec on and off pulses.
6. Take 50 μL total sample.
7. Transfer lysate to SS-34 centrifuge tube.
8. Centrifuge for 30 min at 18000 x g.
9. Take 50 μL soluble sample.

Nickel Nitrotriacetic Acid Chromatography (Nickel-NTA Chromatography)

1. Add 5 mL 50%(v/v) nickel resin in ethanol to a 25 mL gravity flow column and allow to settle to 2.5 mL(CV).
2. Rinse with 10CV dH2O.
3. Equilibrate with 10CV lysis buffer.
4. Load sample onto column.
5. Wash column with 15CV lysis buffer.
6. Perform 2 additional wash steps with 15CV.
7. Elute sample in 10CV elution buffer and collect eluate.
8. Take 50 μL pure sample.

Size Exclusion Chromatography (SEC)

1. Concentrate sample to as high as possible without inducing protein aggregation.
2. Pre-equilibrate Superdex 75 column with 48 mL PBS.
3. Inject 500 μL sample onto column.
4. Run 36 mL PBS through column at 0.5 mL/min, collecting 1 mL fractions.
5. Verify presence of protein in fractions by measuring concentration on Nanodrop and running SDS-PAGE (15 kDa protein should elute at ~13 mL).
6. Pool fractions containing protein.


Back To Top

Stability Analysis


Circular Dichroism: Wavelength Scan

1. Load 1mm cuvette with 400 μL protein solution onto CD.
2. Take wavelength scan:
260 nm-190 nm
sample every 1 nm
averaging time 3 sec
1 scan
step scan
25 °C
3. Record wavelength which gives strongest signal (222 nm).

Circular Dichroism: Guanidine Melt

1. Load 1 cm cuvette containing 1.996 mL of 0.05 mg/mL protein solution and stirrer onto CD.
2. Prepare 8 mL of 0.05 mg/mL protein in concentrated guanidine solution.
3. Set up Automixer with guanidine solution on one syringe and waste tube on other syringe.
4. Titrate up to 6 M guanidine, taking a CD measurement at 222 nm every 0.15 M interval.
5. Also measure the fluorescence at 280 nm to ensure the total protein concentration is not changing.


Back To Top