Team:ETH Zurich/test
From 2014.igem.org
(Difference between revisions)
(→Hi. Thanks for visiting us, but we are not ready with this page yet. We hope you visit us again soon!) |
|||
(6 intermediate revisions not shown) | |||
Line 1: | Line 1: | ||
- | + | <html> | |
- | < | + | <head><link rel="stylesheet" href="https://2014.igem.org/Team:ETH_Zurich/css/katex.min.css?action=raw&ctype=text/css" type="text/css"/></head> |
- | == | + | <script type="text/javascript" src="https://2014.igem.org/Team:ETH_Zurich/js/jquery.min.js?action=raw&ctype=text/javascript"></script> |
+ | <script type="text/javascript" src="https://2014.igem.org/Team:ETH_Zurich/js/katex.min.js?action=raw&ctype=text/javascript"></script> | ||
- | + | ||
- | + | ||
- | < | + | |
- | {{ | + | <span class="equation">\displaystyle c = \pm\sqrt{a^2 + b^2}</span> |
+ | <div class="equation"> \displaystyle \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }</div> | ||
+ | <div class="equation"> \displaystyle \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) </div> | ||
+ | <div class="equation">f(x) = \int_{-\infty}^\infty | ||
+ | \hat f(\xi)\,e^{2 \pi i \xi x} | ||
+ | \,d\xi | ||
+ | </div> | ||
+ | |||
+ | |||
+ | <script type="text/javascript"> | ||
+ | |||
+ | $(document).ready(function(){ | ||
+ | |||
+ | $(".equation").each(function(){ | ||
+ | katex.render($(this).text(), this); | ||
+ | }); | ||
+ | }); | ||
+ | </script> | ||
+ | </html> |
Latest revision as of 19:22, 18 September 2014
\displaystyle c = \pm\sqrt{a^2 + b^2}
\displaystyle \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }
\displaystyle \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)
f(x) = \int_{-\infty}^\infty
\hat f(\xi)\,e^{2 \pi i \xi x}
\,d\xi