Team:ETH Zurich/test

From 2014.igem.org

(Difference between revisions)
(Hi. Thanks for visiting us, but we are not ready with this page yet. We hope you visit us again soon!)
 
(6 intermediate revisions not shown)
Line 1: Line 1:
-
{{:Team:ETH Zurich/tpl/head}}
+
<html>
-
<html><div id="banner"></html>
+
<head><link rel="stylesheet" href="https://2014.igem.org/Team:ETH_Zurich/css/katex.min.css?action=raw&ctype=text/css" type="text/css"/></head>
-
== Hi. Thanks for visiting us, but we are not ready with this page yet. We hope you visit us again soon! ==
+
<script type="text/javascript" src="https://2014.igem.org/Team:ETH_Zurich/js/jquery.min.js?action=raw&ctype=text/javascript"></script>
 +
<script type="text/javascript" src="https://2014.igem.org/Team:ETH_Zurich/js/katex.min.js?action=raw&ctype=text/javascript"></script>
-
==== The iGEM team of ETH will soon tell you about their crazy project ! ====
+
 
-
+
 
-
<html><div class="image"><img src="https://static.igem.org/mediawiki/2014/e/e1/Rule_teaser.png"></div></div></html>
+
 
-
{{:Team:ETH Zurich/tpl/foot}}
+
<span class="equation">\displaystyle c = \pm\sqrt{a^2 + b^2}</span>
 +
<div class="equation"> \displaystyle \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }</div>
 +
<div class="equation"> \displaystyle \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) </div>
 +
<div class="equation">f(x) = \int_{-\infty}^\infty
 +
    \hat f(\xi)\,e^{2 \pi i \xi x}
 +
    \,d\xi
 +
</div>
 +
 
 +
 
 +
<script type="text/javascript">
 +
 
 +
$(document).ready(function(){
 +
 
 +
    $(".equation").each(function(){
 +
katex.render($(this).text(), this);
 +
    });
 +
});
 +
</script>
 +
</html>

Latest revision as of 19:22, 18 September 2014

\displaystyle c = \pm\sqrt{a^2 + b^2}

\displaystyle \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }
\displaystyle \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)
f(x) = \int_{-\infty}^\infty \hat f(\xi)\,e^{2 \pi i \xi x} \,d\xi