Team:BYU Provo/Parts

From 2014.igem.org

(Difference between revisions)
 
(76 intermediate revisions not shown)
Line 1: Line 1:
{{CSS/Main}}
{{CSS/Main}}
-
 
+
{{BYU1}}
<html>
<html>
Line 12: Line 12:
<!--welcome box -->
<!--welcome box -->
<tr>
<tr>
-
<td style="border:4px solid black;" colspan="3" align="center" height="150px" bgColor=#000033>
+
<td style="border:4px solid black;border-radius: 5px;" colspan="3" align="center" height="75px" bgColor=#000033>
-
<h1 style="color:#FFFFFF" >BYU 2014 Team Parts</h1>
+
<h1 style="color:#FFFFFF" >BYU 2014 Team Parts Database</h1>
-
<br></br>
+
 
<p style="color:#FFFFFF"> <a href="https://2014.igem.org/wiki/index.php?title=Team:BYU_Provo/Parts&action=edit"style="color:#FFFFFF"> Click here  to edit this page!</a> </p>
<p style="color:#FFFFFF"> <a href="https://2014.igem.org/wiki/index.php?title=Team:BYU_Provo/Parts&action=edit"style="color:#FFFFFF"> Click here  to edit this page!</a> </p>
</td>
</td>
Line 30: Line 30:
<tr heigth="75px">  
<tr heigth="75px">  
 +
<td align ="center">  <img src="https://static.igem.org/mediawiki/2014/3/3c/Medallion1.jpg" width="55px"> </td>
-
<td style="border:1px solid black; border-radius: 5px;" align="center" height ="45px" onMouseOver="this.bgColor='#d3d3d3'" onMouseOut="this.bgColor='#e7e7e7'" bgColor=#e7e7e7>   
+
<td style="border:1px solid black; border-radius: 5px;" align="center" height ="45px" onMouseOver="this.bgColor='#f9f1e3'" onMouseOut="this.bgColor='#c5af7d'" bgColor=#c5af7d >   
-
<a href="https://2014.igem.org/Team:BYU_Provo"style="color:#000000">Home </a> </td>
+
<a href="https://2014.igem.org/Team:BYU_Provo"style="color:#002255">Home </a> </td>
-
<td style="border:1px solid black; border-radius: 5px;" align="center" height ="45px" onMouseOver="this.bgColor='#d3d3d3'" onMouseOut="this.bgColor='#e7e7e7'" bgColor=#e7e7e7>  
+
<td style="border:1px solid black; border-radius: 5px;" align="center" height ="45px" onMouseOver="this.bgColor='#f9f1e3'" onMouseOut="this.bgColor='#c5af7d'" bgColor=#c5af7d >  
-
<a href="https://2014.igem.org/Team:BYU_Provo/Team"style="color:#000000"> Team </a> </td>
+
<a href="https://2014.igem.org/Team:BYU_Provo/Team"style="color:#002255"> Team </a> </td>
-
<td style="border:1px solid black; border-radius: 5px;" align="center"  height ="45px"  onMouseOver="this.bgColor='#d3d3d3'" onMouseOut="this.bgColor='#e7e7e7'" bgColor=#e7e7e7>  
+
<td style="border:1px solid black; border-radius: 5px;" align="center"  height ="45px"  onMouseOver="this.bgColor='#f9f1e3'" onMouseOut="this.bgColor='#c5af7d'" bgColor=#c5af7d >  
-
<a href="https://igem.org/Team.cgi?year=2014&team_name=BYU_Provo"style="color:#000000"> Official Team Profile </a></td>
+
<a href="https://igem.org/Team.cgi?year=2014&team_name=BYU_Provo"style="color:#002255"> Official Team Profile </a></td>
-
<td style="border:1px solid black; border-radius: 5px;" align="center"  height ="45px" onMouseOver="this.bgColor='#d3d3d3'" onMouseOut="this.bgColor='#e7e7e7'" bgColor=#e7e7e7>   
+
<td style="border:1px solid black; border-radius: 5px;" align="center"  height ="45px" onMouseOver="this.bgColor='#f9f1e3'" onMouseOut="this.bgColor='#c5af7d'" bgColor=#c5af7d >   
-
<a href="https://2014.igem.org/Team:BYU_Provo/Project"style="color:#000000"> Project</a></td>
+
<a href="https://2014.igem.org/Team:BYU_Provo/Project"style="color:#002255"> Project</a></td>
-
<td style="border:1px solid black; border-radius: 5px;" align="center"  height ="45px" onMouseOver="this.bgColor='#d3d3d3'" onMouseOut="this.bgColor='#e7e7e7'" bgColor=#e7e7e7>  
+
<td style="border:1px solid black; border-radius: 5px;" align="center"  height ="45px" onMouseOver="this.bgColor='#f9f1e3'" onMouseOut="this.bgColor='#c5af7d'" bgColor=#c5af7d >  
-
<a href="https://2014.igem.org/Team:BYU_Provo/Parts"style="color:#000000"> Parts</a></td>
+
<a href="https://2014.igem.org/Team:BYU_Provo/Parts"style="color:#002255"> Parts</a></td>
-
<td style="border:1px solid black; border-radius: 5px;" align="center" height ="45px" onMouseOver="this.bgColor='#d3d3d3'" onMouseOut="this.bgColor='#e7e7e7'" bgColor=#e7e7e7>  
+
<td style="border:1px solid black; border-radius: 5px;" align="center" height ="45px" onMouseOver="this.bgColor='#f9f1e3'" onMouseOut="this.bgColor='#c5af7d'" bgColor=#c5af7d >  
-
<a href="https://2014.igem.org/Team:BYU_Provo/Modeling"style="color:#000000"> Modeling</a></td>
+
<a href="https://2014.igem.org/Team:BYU_Provo/Modeling"style="color:#002255"> Modeling</a></td>
-
<td style="border:1px solid black; border-radius: 5px;" align="center" height ="45px" onMouseOver="this.bgColor='#d3d3d3'" onMouseOut="this.bgColor='#e7e7e7'" bgColor=#e7e7e7>   
+
<td style="border:1px solid black; border-radius: 5px;" align="center" height ="45px" onMouseOver="this.bgColor='#f9f1e3'" onMouseOut="this.bgColor='#c5af7d'" bgColor=#c5af7d >   
-
<a href="https://2014.igem.org/Team:BYU_Provo/Notebook"style="color:#000000"> Notebook</a></td>
+
<a href="https://2014.igem.org/Team:BYU_Provo/Notebook"style="color:#002255"> Notebook</a></td>
-
<td style="border:1px solid black; border-radius: 5px;" align="center"  height ="45px" onMouseOver="this.bgColor='#d3d3d3'" onMouseOut="this.bgColor='#e7e7e7'" bgColor=#e7e7e7>  
+
<td style="border:1px solid black; border-radius: 5px;" align="center"  height ="45px" onMouseOver="this.bgColor='#f9f1e3'" onMouseOut="this.bgColor='#c5af7d'" bgColor=#c5af7d >  
-
<a href="https://2014.igem.org/Team:BYU_Provo/Safety"style=" color:#000000"> Safety </a></td>
+
<a href="https://2014.igem.org/Team:BYU_Provo/Safety"style=" color:#002255"> Safety </a></td>
-
<td style="border:1px solid black; border-radius: 5px;" align="center"  height ="45px" onMouseOver="this.bgColor='#d3d3d3'" onMouseOut="this.bgColor='#e7e7e7'" bgColor=#e7e7e7>  
+
<td style="border:1px solid black; border-radius: 5px;" align="center"  height ="45px" onMouseOver="this.bgColor='#f9f1e3'" onMouseOut="this.bgColor='#c5af7d'" bgColor=#c5af7d >  
-
<a href="https://2014.igem.org/Team:BYU_Provo/Attributions"style="color:#000000"> Attributions </a></td>
+
<a href="https://2014.igem.org/Team:BYU_Provo/Attributions"style="color:#002255"> Attributions </a></td>
Line 64: Line 65:
<!--end navigation menu -->
<!--end navigation menu -->
-
</tr>
 
-
 
-
</tr>
 
-
 
-
 
-
 
-
 
-
 
-
</td>
 
<tr> <td colspan="3"  height="15px"> </td></tr>
<tr> <td colspan="3"  height="15px"> </td></tr>
Line 80: Line 72:
-
<!--Parts Submitted to the Registry  -->
+
<!--PARTS TABLE. PLEASE FOLLOW FORMAT FOR EASY ORGANIZATION. ASK IF ANY QUESTIONS. FIND YOUR PARTS TABLE BELOW BY ITS PART ID-->
-
<tr><td > <h3> Parts Submitted to the Registry </h3></td>
+
<!------------------------------------------------------------------------------------------------------------------------>
-
<td ></td >
+
-
<td > <h3>What information do I need to start putting my parts on the Registry? </h3></td>
+
-
</tr>
+
-
<tr>
+
-
<td width="45%"  valign="top">
+
-
<p>
+
-
An important aspect of the iGEM competition is the use and creation of standard  biological parts. Each team will make new parts during iGEM and will submit them to the <a href="http://partsregistry.org"> Registry of Standard Biological Parts</a>. The iGEM software provides an easy way to present the parts your team has created. The "groupparts" tag will generate a table with all of the parts that your team adds to your team sandbox. 
+
-
<p>
 
-
<strong>Note that if you want to document a part you need to document it on the <a href="http://partsregistry.org Registry"> Registry</a>, not on your team wiki.</strong> Future teams and other users and are much more likely to find parts on the Registry than on your team wiki.
 
-
</p>
 
-
<p>
 
-
Remember that the goal of proper part documentation is to describe and define a part, so that it can be used without a need to refer to the primary literature. Registry users in future years should be able to read your documentation and be able to use the part successfully. Also, you should provide proper references to acknowledge previous authors and to provide for users who wish to know more.
 
-
</p>
 
 +
<table border="4" align="center" style="margin-top:20px; margin-left:35px; margin-right:35px">
 +
<tr>
 +
      <td>BBa_K1356000</td>
 +
      <td><b>Alpha Amylase with Signaling Sequence and PstI Site Removed</b></td>
 +
      <td>DNA in pSB1C3 plasmid backbone</td>
 +
      <td>Created by: Jordan Berg</td>
 +
</tr>
 +
<tr>
 +
  <td colspan="4">
 +
      <h3>Description</h3>
 +
      <p>The Alpha Amylase for this part was taken from part BBa_K1195001. Attached to it is a DsbA signaling sequence required in order to express the gene product extracellularly in <i>N. multiformis</i> in the break down of biofilm in wastewater treatment plants. Additionally, the PstI site originally found in the BBa_K1195001 part was removed using site-directed mutagenesis. The restriction site was changed from "CTGCAG" to "CTCCAG" in order to remove this site. This gene is contained within the standard iGEM pSB1C3 plasmid backbone.</p>
 +
      <p>Amylase is an enzyme naturally synthesized by bacteria, such as E. coli, fungi, and even in humans in saliva and the pancreas. This enzyme catalyzes the hydrolysis of starches into sugars and breaks down the components of bacterial extracellular polymeric substance (EPS), which contains extracellular DNA, polysaccharides, and proteins. These components are a primary part of most bacterial biofilms and it is hoped that the enzyme being expressed extracellularly will allow for more biofilm break down so that <i.N. multiformis</i> can more effectively breakdown wastewater components to make wastewater treatment plants more effective. It has been shown in other studies that amylase is an effective degrader of several other types of biofilms and we hope to show that it is equally effective at breaking down wastewater biofilm.</p>
 +
      <h3>Design Notes</h3>
 +
      <p>The DsbA signaling sequence was synthesized using RNA primers overlap-extension PCR owing it the signaling sequence's large size. The mutation to remove the iGem-illegal PstI site was done through mutagenic PCR.</p>
-
<h3>When should you put parts into the Registry?</h3>
+
<center>
 +
<table>
 +
<tr><td><u><center>Part Plasmid Schematic</center></u></td><td><u><center>RaptorX Protein Structure and Function Prediction</center></u></td></tr>
 +
<tr><td><img src="https://static.igem.org/mediawiki/2014/c/ce/PSB1C3_-_BBa_K1356000_annotated.png" align="middle" style="border:2px solid black; border-radius: 5px;" width="500" height="362.4" ></td>
 +
<td><img src="https://static.igem.org/mediawiki/2014/1/13/83900.png" align="center" style="border:2px solid black; border-radius: 5px;"  width="500" height="362.4"></td></tr>
 +
</table>
 +
</center>
-
<p>
 
-
As soon as possible! We encourage teams to start completing documentation for their parts on the Registry as soon as you have it available. The sooner you put up your parts, the better recall you will have of all details surrounding your parts. Remember you don't need to send us the DNA to create an entry for a part on the Registry. However, you must send us the sample/DNA before the Jamboree. Only parts for which you have sent us samples/DNA are eligible for awards and medal requirements.
 
-
</p>
 
-
</td>
 
-
<td > </td>
 
-
<td width="45%" valign="top">
 
-
<p>
+
      <h3>Source</h3>
-
The information needed to initially create a part on the Registry is:
+
      <p>The original amylase we modified was from part BBa_K1195001 in the iGem parts registry.</p>
 +
  </td>
 +
</tr>
 +
</table>
 +
 
 +
<table border="4" align="center" style="margin-top:10px; margin-left:35px; margin-right:35px">
 +
<tr>
 +
      <td>BBa_K1356001</td>
 +
      <td><b>LMD-9 CRISPR 3 System</b></td><!--Put name of part in this td bracket-->
 +
      <td>DNA in pSB1C3 plasmid backbone</td>
 +
      <td>Created by: Garrett Jensen, Mike Abboud, Michail Linzey.</td><!--Insert your name-->
 +
</tr>
 +
<tr>
 +
  <td colspan="4"> <!--Treat this td as a normal web page, describe your part thoroughly, add pictures, etc. What is already included is just a start, feel free to expand.-->
 +
      <h3>Description</h3>
 +
      <p>This is the Type II CRISPR3 system taken from Streptococcus thermophilus LMD-9. It is the Cas9, Csn1, Cas1, and Cas2 proteins along with the tracrRNA but . It may be used with a novel spacer/repeat region to target bacteriophage, plasmids, or any other form of incoming DNA. Cas9 is an endonuclease/exonuclease type protein and is the agent that inactivates incoming DNA. Csn1, Cas1, and Cas2 are involved in additional spacer acquisition, though the method is unknown. Cas9 can be directed by specially designed spacers or by spacers acquired by the CRISPR. The adaptive nature of the CRISPR3 makes it useful as an adaptive immune system for bacteria. It has been shown to be effective in a diverse range of microbes and can be used in any microbe.</p>
 +
      <h3>Design Notes</h3>
 +
      <p>This part has many restriction sites present. We have removed 3 EcoRI sites and 2 SpeI sites from this CRISPR so that it can be used with the iGEM plasmid. This CRISPR has also been engineered with a BamHI restriction site in the third spacer following the CRISPR protein set. This can be used to insert custom spacers into the existing spacer-repeat region.</p>
 +
<p align="center"><img src="https://static.igem.org/mediawiki/2014/4/4f/IGEM_CRISPR_Plasmid.png" height="525px" width="644px" style="border:2px solid black; border-radius: 5px;"></p>
 +
<h3>Source</h3>
 +
      <p>Streptococcus thermophilus LMD-9 genomic DNA. GenBank Accession Number: NC_008532.1
</p>
</p>
 +
      <h3>References</h3>
 +
      <p>
<ol>
<ol>
 +
<li>Rimantas Sapranauskas, et. Al. The Streptococcus thermophilus CRISPR/Cas system provides immunity inEscherichia coliNucl. Acids Res. (2011) 39 (21): 9275-9282 first published online August 3, 2011doi:10.1093/nar/gkr606</li>
 +
<li>Hongfan Chen, Jihoon Choi, and Scott Bailey. Cut Site Selection by the Two Nuclease Domains of the Cas9 RNA-guided EndonucleaseJ. Biol. Chem. jbc.M113.539726. First Published on March 14, 2014,doi:10.1074/jbc.M113.539726</li>
 +
<li>Shah SA, Erdmann S, Mojica FJ, Garrett RA. Protospacer recognition motifs: Mixed identities and functional diversity. RNA Biology 2013; 10:891 - 899; PMID: 23403393; http://dx.doi.org/10.4161/rna.23764</li>
 +
<li>"Addgene: Addgene's CRISPR Guide." Addgene: Addgene's CRISPR Guide. Web. 8 Apr. 2014.</li>
 +
<li>Krzysztof Chylinski, Kira S. Makarova, Emmanuelle Charpentier,and Eugene V. Koonin. Classification and evolution of type II CRISPR-Cas systemsNucl. Acids Res. first published online April 11, 2014 doi:10.1093/nar/gku241</li>
 +
<li>"Streptococcus Thermophilus LMD-9, Complete Genome." National Center for Biotechnology Information. U.S. National Library of Medicine, 24 Oct. 2006. Web. 8 Apr. 2014. <http://www.ncbi.nlm.nih.gov/nuccore/NC_008532.1>.</li>
 +
<li>Choi, Jeongdong, Shireen M. Kotay, and Ramesh Goel. "Various Physico-chemical Stress Factors Cause Prophage Induction in Nitrosospira Multiformis 25196- an Ammonia Oxidizing Bacteria." Science Direct. Water Research, 4 Aug. 2010. Web. 1 Feb. 2014. <http://www.sciencedirect.com/science/article/pii/S0043135410002940>.</li>
-
<li>Part Name</li>
 
-
<li>Part type</li>
 
-
<li>Creator</li>
 
-
<li>Sequence</li>
 
-
<li>Short Description (60 characters on what the DNA does)</li>
 
-
<li>Long Description (Longer description of what the DNA does)</li>
 
-
<li>Design considerations</li>
 
</ol>
</ol>
-
 
-
<p>
 
-
We encourage you to put up <em>much more</em> information as you gather it over the summer. If you have images, plots, characterization data and other information, please also put it up on the part page. Check out part <a href="http://parts.igem.org/Part:BBa_K404003">BBa_K404003</a> for an excellent example of a highly characterized part.
 
</p>
</p>
 +
  </td> <!--This is the end of where you will put all your data-->
 +
</tr>
 +
</table>
-
<p>
+
<table border="4" align="center" style="margin-top:10px; margin-left:35px; margin-right:35px">
-
You can add parts to the Registry at our <a href="http://parts.igem.org/Add_a_Part_to_the_Registry"> Add a Part to the Registry</a> link.
+
<tr>
-
</p>
+
      <td>BBa_K1356002</td>
-
</td>
+
      <td><b>BBa K1356002</b></td>
 +
      <td>Dispersin B with DsbA Signaling Sequence</td>
 +
      <td>Created by: Jared McOmber</td>
</tr>
</tr>
 +
<tr>
 +
  <td colspan="4"> <!--Treat this td as a normal web page, describe your part thoroughly, add pictures, etc. What is already included is just a start, feel free to expand.-->
 +
      <h3>Description</h3>
 +
<p>Dispersin B is a hydrolase protein that aids in the degradation of biofilms. This part contains the Dispersin B gene from part BBa_K1195000, with a signal sequence attached for export from the bacteria Nitrosospira Multiformis for the purpose of aiding in the breakup of biofilms in waste water management facilities.
 +
A biofilm is a complex matrix composed of extracellular polymeric substances (EPS) and bacterial cells. They are generated as a defense mechanism by certain bacterial species. Although researchers have had difficulty isolating and identifying specific components of various biofilms it is generally accepted that biofilms are composed of: polysaccharides, proteins and extracellular DNA.
-
<!--PARTS TABLE. PLEASE FOLLOW FORMAT FOR EASY ORGANIZATION. ASK IF ANY QUESTIONS.-->
+
Dispersin B is an enzyme that targets polysaccharides in the matrix. It specifically targets "the glycosidic linkages of poly-β-1,6-GlcNAc" for hydrolysis (Itoh,Hinnebusch, Preston, & Romeo, 2005).
 +
<i>N. multiformis</i> is an amonia-oxidizing bacterium common to waste-water treatment facilities. Using NCBI we blasted it's genome for a signaling sequence found on the DsbA protein, common to <i>E. Coli.</i>, and were able to find a match. The sequence will enable Dispersin to be exported from <i> N. multiformis </i> and act to degrade problematic biofilm in the reactors.</p>
 +
      <h3>Design Notes</h3>
 +
      <p>The DsbA signaling sequence was attached to the Dispersin B gene using PCR. Due to the length of the forward primer, overlap extension PCR was used to piece it together prior to attaching it to the Dispersin Gene.
 +
</p>
-
<table border="4" align="center" style="margin-top:10px; margin-left:35px; margin-right:35px">
+
<p align="center"><u>Part Schematic</u></p>
-
<thead><th colspan="8" align="center">2014 BYU iGem Parts Database</th></thead>
+
<p align="center"><img src="https://static.igem.org/mediawiki/2014/c/cc/PSB1C3_-_BBa_K1356002.jpg" height="525px" width="644px" align="center" style="border:2px solid black; border-radius: 5px;"></p>
-
<tr><td>Part Name</td><td>iGem Database Part ID</td><td>Grose Lab Part ID</td><td>Part type</td><td>Creator</td><td>Sequence</td><td>Description</td><td>Design considerations</td>
+
<p align="center"><u>Ribbon Diagram</u></p>
-
<!--<tr>
+
<p align="center"><img src="https://static.igem.org/mediawiki/parts/2/25/DispB.jpeg" height"300px" width="300"px align="center" style="border:2px solid black; border-radius: 5px;" >
-
      <td>Amylase Forward Primer (Signaling Sequence)</td>
+
      <h3>Source</h3>
-
      <td></td>
+
<p>The Dispersin B DNA was aquired from part BBa_K1195000. The signaling sequence was simply ordered along with our primers.
-
      <td>BI347</td>
+
Dispersin B was originally discovered in <i>Aggregatibacter actinomycetemcomitans</i>, a pathogenic bacteria which causes gum disease. The bacteria uses excreted Dispersin B protein to disperse it's own biofilm formations, and enable it to spread to other locations (Kaplan, Ragunath,Ramasubbu,& Fine, 2003).</p>
-
      <td>Primer</td>
+
      <h3>References</h3>
-
       <td>Jordan Berg</td>
+
<ol><li>Itoh, Y., Wang, X., Hinnebusch, B. J., Preston, J. F., & Romeo, T. (2005). Depolymerization of -1,6-N-Acetyl-D-Glucosamine Disrupts the Integrity of Diverse Bacterial Biofilms. Journal of Bacteriology. doi:10.1128/JB.187.1.382-387.2005</li>
-
      <td>ccctctagatgatccgcgcgagcaggggaaattgac ggaaaacctataccggccagcaacagg</td>
+
<li>Kaplan, J. B., Ragunath, C., Ramasubbu, N., & Fine, D. H. (2003). Detachment of Actinobacillus actinomycetemcomitans Biofilm Cells by an Endogenous Hexosaminidase Activity. Journal of Bacteriology. doi:10.1128/JB.185.16.4693-4698.2003</li></ol>
-
      <td>This is the first half of the forward primer used for overlap extension PCR for the alpha amylase BBa_K1195001 gene with a signaling sequence. This primer contains a ccc spacer, XbaI restriction site and, start codon, and then the first 52 base pairs of the signaling sequence.</td>
+
       <p></p>
-
      <td></td>
+
  </td> <!--This is the end of where you will put all your data-->
</tr>
</tr>
 +
</table>
 +
 +
<table border="4" align="center" style="margin-top:10px; margin-left:35px; margin-right:35px">
<tr>
<tr>
-
       <td>Amylase Reverse Primer (Signaling Sequence)</td>
+
       <td>BBa_K1356003</td>
-
       <td></td>
+
       <td><b>Nitrite Reductase (<i>nirS</i>) from <i>Pseudomonas aeruginosa</i> PAO1</b></td><!--Put name of part in this td bracket-->
-
      <td>BI373</td>
+
      <td>DNA in pSB1C3 plasmid backbone</td>
-
      <td>Primer</td>
+
      <td>Created by: Cameron Sargent</td><!--Insert your name-->
-
      <td>Jordan Berg</td>
+
-
      <td>AAC AGC GTG GGA TTA CGC ATA TGA ATT TAC TGC GGC TGC TTA CGG CAT TCC TGT TGC TGG CCG GTA TAG G</td>
+
-
      <td>This is the reverse portion of the Signaling sequence forward primer to be used for extension overlap PCR for alpha Amylase BBa_K1195001. It is the reverse complement of the last 50 base pairs of the signaling sequence and then the first 20 base pairs of the alpha Amylase gene. </td>
+
-
      <td></td>
+
</tr>
</tr>
-
<tr>
+
<tr>  
-
      <td>Amylase Reverse Primer</td>
+
  <td colspan="4"> <!--Treat this td as a normal web page, describe your part thoroughly, add pictures, etc. What is already included is just a start, feel free to expand.-->
-
      <td></td>
+
      <h3>Description</h3>
-
      <td>BI348</td>
+
      <p>This gene codes for the nitrite reductase (<i>nirS</i>) that converts nitrite (NO<sub>2</sub><sup>-</sup>) into nitric oxide (NO). This conversion is the first step in the denitrification pathway from nitrite (NO<sub>2</sub><sup>-</sup>) to nitrogen gas (N<sub>2</sub>). Please refer to <a href="https://static.igem.org/mediawiki/2014/d/d4/DenitrificationSchematic.png">this image</a> for a schematic of the denitrification pathway.</p>
-
      <td>Primer</td>
+
      <h3>Design Notes</h3>      
-
      <td>Jordan Berg</td>
+
      <p> This gene was cloned from <i>Pseudomonas aeruginosa</i> PAO1 genomic DNA into pSB1C3 using the <i>Xba</i>I and <i>Spe</i>I restriction sites. Correct sequence and orientation were confirmed using 454 Pyrosequencing (BYU).</p>
-
      <td>ccccactagtattaaatcacctcttcgataaccc</td>
+
      <p align="center"><img src="https://static.igem.org/mediawiki/2014/f/f4/PSB1C3_-_BBa_K1356003.png" height="500" width="500" style="border:2px solid black; border-radius: 5px;"></p>
-
      <td>This is the reverse primer for the alpha Amylase BBa_K1195001. It contains a ccc spacer, SpeI restriction site, and then the reverse compliment of the last 23 base pairs of the a-Amylase gene.</td>
+
      <h3>Source</h3>
-
      <td></td>
+
      <p>This gene was cloned from <i>Pseudomonas aeruginosa</i> PAO1 genomic DNA, which was isolated from a bacterial stock provided by Dr. Stephen Lory at Harvard Medical School in Boston.</p>
 +
      <h3>References</h3>
 +
      <ol type="1"> <li>Z. Chen et al., Differentiated response of denitrifying communities to fertilization regime in paddy soil. <i>Microbial ecology</i> <b>63</b>, 446 (Feb, 2012).</li>
 +
          <li>H. Arai, Regulation and Function of Versatile Aerobic and Anaerobic Respiratory Metabolism in Pseudomonas aeruginosa. <i>Frontiers in microbiology</i> <b>2</b>, 103 (2011).</li>
 +
          <li>V. Kathiravan, Pseudomonas aeruginosa and Achromobacter sp.: nitrifying aerobic denitrifiers have a plasmid encoding for denitrifying functional genes. <i>World journal of microbiology & biotechnology</i> <b>30</b>, 1187 (2014).</li></ol>
 +
  </td> <!--This is the end of where you will put all your data-->
</tr>
</tr>
 +
</table>
 +
 +
<table border="4" align="center" style="margin-top:10px; margin-left:35px; margin-right:35px">
<tr>
<tr>
-
       <td>Amylase PstI Site-Directed Mutagenesis Primer 1</td>
+
       <td>BBa_K1356004</td>
-
       <td></td>
+
       <td><b>Nitric oxide reductase (<i>norC</i>) from <i>Pseudomonas aeruginosa</i> PAO1</b></td><!--Put name of part in this td bracket-->
-
      <td>BI369</td>
+
       <td>DNA in pSB1C3 plasmid backbone</td>
-
      <td>Primer</td>
+
       <td>Created by: Cameron Sargent</td><!--Insert your name-->
-
      <td>Jordan Berg</td>
+
-
      <td>gtttgatgcgccgctccagatgaaattccat</td>
+
-
       <td>This is the first primer for the point mutation of the PstI site in the BBa_K1195001 alpha Amylase. It contains 15 base pairs from the gene on either side of the base pair that will be mutated. The original PstI restriction site is ctgcag. We have changed it for this primer so that the site now reads ctccag.</td>
+
-
       <td></td>
+
</tr>
</tr>
 +
<tr>
 +
  <td colspan="4"> <!--Treat this td as a normal web page, describe your part thoroughly, add pictures, etc. What is already included is just a start, feel free to expand.-->
 +
      <h3>Description</h3>
 +
      <p>This gene codes for one of the nitric oxide reductase subunits (<em>norC</em>) that, in connection with the other subunit (<em>norB</em>), converts nitric oxide (NO) into nitrous oxide (N<sub>2</sub>O). This conversion is the second step in the denitrification pathway from nitrite (NO<sup>2-</sup>) to nitrogen gas (N<sub>2</sub>). Please refer to <a href="https://static.igem.org/mediawiki/2014/d/d4/DenitrificationSchematic.png">this image</a> for a schematic of the denitrification pathway.</p>
 +
      <h3>Design Notes</h3>
 +
      <p>This gene was cloned from <em>Pseudomonas aeruginosa</em> PAO1 genomic DNA into pSB1C3 using the <em>Xba</em>I and <em>Spe</em>I restriction sites. Correct sequence and orientation were confirmed using 454 Pyrosequencing (BYU).</p>
 +
    <p align="center"><img src="https://static.igem.org/mediawiki/2014/d/d5/PSB1C3_-_BBa_K1356004.png" height="500" width="500" style="border:2px solid black; border-radius: 5px;"></p>
 +
      <h3>Source</h3>
 +
      <p>This gene was cloned from <i>Pseudomonas aeruginosa</i> PAO1 genomic DNA, which was isolated from a bacterial stock provided by Dr. Stephen Lory at Harvard Medical School in Boston.</p>
 +
      <h3>References</h3>
 +
      <ol type="1"> <li>Z. Chen et al., Differentiated response of denitrifying communities to fertilization regime in paddy soil. <i>Microbial ecology</i> <b>63</b>, 446 (Feb, 2012).</li>
 +
          <li>H. Arai, Regulation and Function of Versatile Aerobic and Anaerobic Respiratory Metabolism in Pseudomonas aeruginosa. <i>Frontiers in microbiology</i> <b>2</b>, 103 (2011).</li>
 +
          <li>V. Kathiravan, Pseudomonas aeruginosa and Achromobacter sp.: nitrifying aerobic denitrifiers have a plasmid encoding for denitrifying functional genes. <i>World journal of microbiology & biotechnology</i> <b>30</b>, 1187 (2014).</li></ol>
 +
  </td> <!--This is the end of where you will put all your data-->
 +
</tr>
 +
</table>
 +
 +
<table border="4" align="center" style="margin-top:10px; margin-left:35px; margin-right:35px">
<tr>
<tr>
-
       <td>Amylase PstI Site-Directed Mutagenesis Primer 2</td>
+
       <td>BBa_K1356005</td>
-
       <td></td>
+
       <td><b>Nitric oxide reductase (<i>norB</i>) from <i>Pseudomonas aeruginosa</i> PAO1</b></td><!--Put name of part in this td bracket-->
-
      <td>BI370</td>
+
       <td>DNA in pSB1C3 plasmid backbone</td>
-
      <td>Primer</td>
+
      <td>Created by: Cameron Sargent</td><!--Insert your name-->
-
      <td>Jordan Berg</td>
+
-
      <td>ATG GAA TTT CAT CTG GAG CGG CGC ATC AAA C</td>
+
-
       <td>This is the second primer for the point mutation of the PstI site in the BBa_K1195001 alpha Amylase. It contains 15 base pairs from the gene on either side of the base pair that will be mutated. The original PstI restriction site is gacgtc. We have changed it for this primer so that the site now reads gaggtc. This primer is the reverse compliment of the first primer for the point mutation of the PstI site in BBa_K1195001 alpha Amylase.</td>
+
-
        <td></td>
+
</tr>
</tr>
 +
<tr>
 +
  <td colspan="4"> <!--Treat this td as a normal web page, describe your part thoroughly, add pictures, etc. What is already included is just a start, feel free to expand.-->
 +
      <h3>Description</h3>
 +
      <p>This gene codes for one of the nitric oxide reductase subunits (<i>norB</i>) that, in connection with the other subunit (<i>norC</i>), converts nitric oxide (NO) into nitrous oxide (N<sub>2</sub>O). This conversion is the second step in the denitrification pathway from nitrite (NO<sup>2-</sup>) to nitrogen gas (N<sub>2</sub>). Please refer to <a href="https://static.igem.org/mediawiki/2014/d/d4/DenitrificationSchematic.png">this image</a> for a schematic of the denitrification pathway.</p>
 +
      <h3>Design Notes</h3>
 +
        <p>This gene was cloned from <i>Pseudomonas aeruginosa</i> PAO1 genomic DNA into pSB1C3 using the <i>Xba</i>I and <i>Spe</i>I restriction sites. Correct sequence and orientation were confirmed using 454 Pyrosequencing (BYU). The original sequence contained <i>Pst</i>I sites starting at bases 115 and 1,231. These sequences were changed to CTTCAG and CTACAG, respectively, using site-specific mutagenesis; the mutant sites were verified to code for the same amino acids. Mutagenesis was also confirmed using 454 Pyrosequencing (BYU). </p>
 +
    <p align="center"><u>pSB1C3 Plasmid with <i>norB</i> insert:</u></p>
 +
    <p align="center"><img src="https://static.igem.org/mediawiki/2014/f/fd/PSB1C3_-_BBa_K1356005.png" height="500" width="500" style="border:2px solid black; border-radius: 5px;"></p>
 +
  <h3>Source</h3>
 +
      <p>This gene was cloned from <i>Pseudomonas aeruginosa</i> PAO1 genomic DNA, which was isolated from a bacterial stock provided by Dr. Stephen Lory at Harvard Medical School in Boston.</p>
 +
      <h3>References</h3>
 +
        <ol type="1"> <li>Z. Chen et al., Differentiated response of denitrifying communities to fertilization regime in paddy soil. <i>Microbial ecology</i> <b>63</b>, 446 (Feb, 2012).</li>
 +
          <li>H. Arai, Regulation and Function of Versatile Aerobic and Anaerobic Respiratory Metabolism in Pseudomonas aeruginosa. <i>Frontiers in microbiology</i> <b>2</b>, 103 (2011).</li>
 +
          <li>V. Kathiravan, Pseudomonas aeruginosa and Achromobacter sp.: nitrifying aerobic denitrifiers have a plasmid encoding for denitrifying functional genes. <i>World journal of microbiology & biotechnology</i> <b>30</b>, 1187 (2014).</li></ol>
 +
  </td> <!--This is the end of where you will put all your data-->
 +
</tr>
 +
</table>
 +
 +
<table border="4" align="center" style="margin-top:10px; margin-left:35px; margin-right:35px">
<tr>
<tr>
-
        <td>Alpha Amylase Forward Primer (TolB signaling sequence)</td>
+
      <td>BBa_K1356006</td>
-
        <td></td>
+
      <td><b>Nitrous oxide reductase (<i>nosZ</i>) from <i>Pseudomonas aeruginosa</i> PAO1</b></td><!--Put name of part in this td bracket-->
-
        <td>BI402</td>
+
       <td>DNA in pSB1C3 plasmid backbone</td>
-
        <td>Primer</td>
+
       <td>Created by: Cameron Sargent</td><!--Insert your name-->
-
        <td>Jordan Berg</td>
+
-
        <td> CCCTCTAGATGCGTAATTTTTTGTATTGTACTGGTGTG TTTCTGTTGTTATGGATGAATACACCGCTACAA GCTGCTATGCGTAATCCCACGCTGAT</td>
+
-
        <td>This forward primer for Alpha Amylase is contains a ccc spacer, the XbaI restriction sites, the 69 bases that make up the signaling sequence of the N. eutropha TolB protein, and the first 20 bases of Alpha Amylase. This signaling sequence should also be compatible with <em>N. europaea</em> and <em>N. multiformis</em>.</td>
+
-
        <td></td>
+
-
</tr>-->
+
-
<tr>
+
-
       <td>Alpha Amylase with Signaling Sequence and PstI Site Removed</td>
+
-
       <td></td>
+
-
      <td></td>
+
-
      <td>Plasmid</td>
+
-
      <td>Jordan Berg</td>
+
-
          <td>Please refer to part description found at parts.igem.org for full sequence and plasmid schematic
+
-
<!--CTAGATCCGCGCGAGCAGGGGAAATTGACGGAAAA
+
-
      CCTATACCGGCCAGCAACAGGAATGCCGTAAGCAGCCG
+
-
CAGTAAATTCATATGCGTAATCCCACGCTGATATGCGT
+
-
AATCCCACGCTGTTACAATGTTTTCACTGGTATTACCC
+
-
GGAAGGCGGTAAGCTCTGGCCTGAACTGGCCGAGCG
+
-
CGCCGACGGTTTTAATGATATTGGTATCAATATGGTCT
+
-
GGTTGCCGCCCGCCTATAAAGGCGCATCGGGCGGGT
+
-
ATTCGGTCGGCTACGACTCCTATGATTTATTTGATTTA
+
-
GGCGAGTTTGATCAGAAAGGCAGCATCCCTACTAAAT
+
-
ATGGCGATAAAGCACAACTGCTGGCCGCCATTGATGC
+
-
TCTGAAACGTAATGACATTGCGGTGCTGTTGGATGTG
+
-
GTAGTCAACCACAAAATGGGCGCGGATGAAAAAGAA
+
-
GCTATTCGCGTGCAGCGTGTAAATGCTGATGACCGTA
+
-
CGCAAATTGACGAAGAAATCATTGAGTGTGAAGGCTG
+
-
GACGCGTTACACCTTCCCCGCCCGTGCCGGGCAATAC
+
-
TCGCAGTTTATCTGGGATTTCAAATGTTTTAGCGGTAT
+
-
CGACCATATCGAAAACCCTGACGAAGATGGCATTTTTA
+
-
AAATTGTTAACGACTACACCGGCGAAGGCTGGAACGA
+
-
TCAGGTTGATGATGAATTAGGTAATTTCGATTATCTGAT
+
-
GGGCGAGAATATCGATTTTCGCAATCATGCCGTGACGG
+
-
AAGAGATTAAATACTGGGCGCGCTGGGTGATGGAACA
+
-
AACGCAATGCGACGGTTTTCGTCTTGATGCGGTCAAAC
+
-
ATATTCCAGCCTGGTTTTATAAAGAGTGGATCGAACAC
+
-
GTACAGGAAGTTGCGCCAAAGCCGCTGTTTATTGTGGC
+
-
GGAGTACTGGTCGCATGAAGTTGATAAGCTGCAAACGT
+
-
ATATTGATCAGGTGGAAGGCAAAACCATGCTGTTTGAT
+
-
GCGCCGCTCCAGATGAAATTCCATGAAGCATCGCGCAT
+
-
GGGGCGCGACTACGACATGACGCAGATTTTCACGGGTA
+
-
CATTAGTGGAAGCCGATCCTTTCCACGCCGTGACGCTC
+
-
GTTGCCAATCACGACACCCAACCGTTGCAAGCCCTCGA
+
-
AGCGCCGGTCGAACCGTGGTTTAAACCGCTGGCGTATG
+
-
CCTTAATTTTGTTGCGGGAAAATGGCGTTCCTTCGGTAT
+
-
TCTATCCGGACCTCTACGGTGCGCATTACGAAGATGTCG
+
-
GTGGTGACGGGCAAACCTATCCGATAGATATGCCAATAA
+
-
TCGAACAGCTTGATGAGTTAATTCTCGCCCGTCAGCGTT
+
-
TCGCCCACGGTGTACAGACGTTATTTTTCGACCATCCGA
+
-
ACTGCATTGCCTTTAGCCGCAGTGGCACCGACGAATTTC
+
-
CCGGCTGCGTGGTGGTCATGTCGAACGGGGATGATGGC
+
-
GAAAAAACCATTCATCTGGGAGAGAATTACGGCAATAAA
+
-
ACCTGGCGTGATTTTCTGGGGAACCGGCAAGAGAGAGT
+
-
AGTGACCGACGAAAACGGCGAAGCAACCTTCTTTTGCA
+
-
ACGGCGGCAGCGTCAGCGTGTGGGTTATCGAAGAGGTG
+
-
ATTTAA--></td>
+
-
        <td>This is the alpha amylase taken from part BBa_K1195001. Attached to it is a TolB signaling sequence meant to all the gene product to be expressed extracellularly in <em>N. multiformis</em> in the break down of biofilm in wastewater treatment plants. Additionally, the PstI site originally found in the BBa_K1195001 part was removed using site-directed mutagenesis. The restriction site was changed from "CTGCAG" to "CTCCAG". This gene is located in the standard iGem pSB1C3 plasmid backbone.</td>
+
-
        <td></td>
+
</tr>
</tr>
 +
<tr>
 +
  <td colspan="4"> <!--Treat this td as a normal web page, describe your part thoroughly, add pictures, etc. What is already included is just a start, feel free to expand.-->
 +
      <h3>Description</h3>
 +
      <p>This gene codes for the nitrous oxide reductase (<i>nosZ</i>) that converts nitrous oxide (N<sub>2</sub>O) into nitrogen gas (N<sub>2</sub>). This conversion is the third and final step in the denitrification pathway from nitrite (NO<sup>2-</sup>) to nitrogen gas (N<sub>2</sub>). Please refer to <a href="https://static.igem.org/mediawiki/2014/d/d4/DenitrificationSchematic.png">this image</a> for a schematic of the denitrification pathway.</p>
 +
      <h3>Design Notes</h3>
 +
        <p>This gene was cloned from <i>Pseudomonas aeruginosa</i> PAO1 genomic DNA into pSB1C3 using the <i>Xba</i>I and <i>Spe</i>I restriction sites. Correct sequence and orientation were confirmed using 454 Pyrosequencing (BYU). This sequence contains a <i>Pst</i>I site starting at base 1845.</p>
 +
    <p align="center"><img src="https://static.igem.org/mediawiki/2014/7/75/PSB1C3_-_BBa_K1356006.png" height="500" width="500" style="border:2px solid black; border-radius: 5px;"></p>
 +
      <h3>Source</h3>
 +
      <p>This gene was cloned from <i>Pseudomonas aeruginosa</i> PAO1 genomic DNA, which was isolated from a bacterial stock provided by Dr. Stephen Lory at Harvard Medical School in Boston.</p>
 +
      <h3>References</h3>
 +
      <ol type="1"> <li>Z. Chen et al., Differentiated response of denitrifying communities to fertilization regime in paddy soil. <i>Microbial ecology</i> <b>63</b>, 446 (Feb, 2012).</li>
 +
          <li>H. Arai, Regulation and Function of Versatile Aerobic and Anaerobic Respiratory Metabolism in Pseudomonas aeruginosa. <i>Frontiers in microbiology</i> <b>2</b>, 103 (2011).</li>
 +
          <li>V. Kathiravan, Pseudomonas aeruginosa and Achromobacter sp.: nitrifying aerobic denitrifiers have a plasmid encoding for denitrifying functional genes. <i>World journal of microbiology & biotechnology</i> <b>30</b>, 1187 (2014).</li></ol>
 +
  </td> <!--This is the end of where you will put all your data-->
 +
</tr>
 +
</table>
 +
 +
 +
 +
 +
Line 267: Line 293:
-
</table>
 
<br></br>
<br></br>
-
<br></br>
+
 

Latest revision as of 03:48, 18 October 2014

BYU 2014 Team Parts Database

Click here to edit this page!

Home Team Official Team Profile Project Parts Modeling Notebook Safety Attributions
BBa_K1356000 Alpha Amylase with Signaling Sequence and PstI Site Removed DNA in pSB1C3 plasmid backbone Created by: Jordan Berg

Description

The Alpha Amylase for this part was taken from part BBa_K1195001. Attached to it is a DsbA signaling sequence required in order to express the gene product extracellularly in N. multiformis in the break down of biofilm in wastewater treatment plants. Additionally, the PstI site originally found in the BBa_K1195001 part was removed using site-directed mutagenesis. The restriction site was changed from "CTGCAG" to "CTCCAG" in order to remove this site. This gene is contained within the standard iGEM pSB1C3 plasmid backbone.

Amylase is an enzyme naturally synthesized by bacteria, such as E. coli, fungi, and even in humans in saliva and the pancreas. This enzyme catalyzes the hydrolysis of starches into sugars and breaks down the components of bacterial extracellular polymeric substance (EPS), which contains extracellular DNA, polysaccharides, and proteins. These components are a primary part of most bacterial biofilms and it is hoped that the enzyme being expressed extracellularly will allow for more biofilm break down so that can more effectively breakdown wastewater components to make wastewater treatment plants more effective. It has been shown in other studies that amylase is an effective degrader of several other types of biofilms and we hope to show that it is equally effective at breaking down wastewater biofilm.

Design Notes

The DsbA signaling sequence was synthesized using RNA primers overlap-extension PCR owing it the signaling sequence's large size. The mutation to remove the iGem-illegal PstI site was done through mutagenic PCR.

Part Plasmid Schematic
RaptorX Protein Structure and Function Prediction

Source

The original amylase we modified was from part BBa_K1195001 in the iGem parts registry.

BBa_K1356001 LMD-9 CRISPR 3 System DNA in pSB1C3 plasmid backbone Created by: Garrett Jensen, Mike Abboud, Michail Linzey.

Description

This is the Type II CRISPR3 system taken from Streptococcus thermophilus LMD-9. It is the Cas9, Csn1, Cas1, and Cas2 proteins along with the tracrRNA but . It may be used with a novel spacer/repeat region to target bacteriophage, plasmids, or any other form of incoming DNA. Cas9 is an endonuclease/exonuclease type protein and is the agent that inactivates incoming DNA. Csn1, Cas1, and Cas2 are involved in additional spacer acquisition, though the method is unknown. Cas9 can be directed by specially designed spacers or by spacers acquired by the CRISPR. The adaptive nature of the CRISPR3 makes it useful as an adaptive immune system for bacteria. It has been shown to be effective in a diverse range of microbes and can be used in any microbe.

Design Notes

This part has many restriction sites present. We have removed 3 EcoRI sites and 2 SpeI sites from this CRISPR so that it can be used with the iGEM plasmid. This CRISPR has also been engineered with a BamHI restriction site in the third spacer following the CRISPR protein set. This can be used to insert custom spacers into the existing spacer-repeat region.

Source

Streptococcus thermophilus LMD-9 genomic DNA. GenBank Accession Number: NC_008532.1

References

  1. Rimantas Sapranauskas, et. Al. The Streptococcus thermophilus CRISPR/Cas system provides immunity inEscherichia coliNucl. Acids Res. (2011) 39 (21): 9275-9282 first published online August 3, 2011doi:10.1093/nar/gkr606
  2. Hongfan Chen, Jihoon Choi, and Scott Bailey. Cut Site Selection by the Two Nuclease Domains of the Cas9 RNA-guided EndonucleaseJ. Biol. Chem. jbc.M113.539726. First Published on March 14, 2014,doi:10.1074/jbc.M113.539726
  3. Shah SA, Erdmann S, Mojica FJ, Garrett RA. Protospacer recognition motifs: Mixed identities and functional diversity. RNA Biology 2013; 10:891 - 899; PMID: 23403393; http://dx.doi.org/10.4161/rna.23764
  4. "Addgene: Addgene's CRISPR Guide." Addgene: Addgene's CRISPR Guide. Web. 8 Apr. 2014.
  5. Krzysztof Chylinski, Kira S. Makarova, Emmanuelle Charpentier,and Eugene V. Koonin. Classification and evolution of type II CRISPR-Cas systemsNucl. Acids Res. first published online April 11, 2014 doi:10.1093/nar/gku241
  6. "Streptococcus Thermophilus LMD-9, Complete Genome." National Center for Biotechnology Information. U.S. National Library of Medicine, 24 Oct. 2006. Web. 8 Apr. 2014. .
  7. Choi, Jeongdong, Shireen M. Kotay, and Ramesh Goel. "Various Physico-chemical Stress Factors Cause Prophage Induction in Nitrosospira Multiformis 25196- an Ammonia Oxidizing Bacteria." Science Direct. Water Research, 4 Aug. 2010. Web. 1 Feb. 2014. .

BBa_K1356002 BBa K1356002 Dispersin B with DsbA Signaling Sequence Created by: Jared McOmber

Description

Dispersin B is a hydrolase protein that aids in the degradation of biofilms. This part contains the Dispersin B gene from part BBa_K1195000, with a signal sequence attached for export from the bacteria Nitrosospira Multiformis for the purpose of aiding in the breakup of biofilms in waste water management facilities. A biofilm is a complex matrix composed of extracellular polymeric substances (EPS) and bacterial cells. They are generated as a defense mechanism by certain bacterial species. Although researchers have had difficulty isolating and identifying specific components of various biofilms it is generally accepted that biofilms are composed of: polysaccharides, proteins and extracellular DNA. Dispersin B is an enzyme that targets polysaccharides in the matrix. It specifically targets "the glycosidic linkages of poly-β-1,6-GlcNAc" for hydrolysis (Itoh,Hinnebusch, Preston, & Romeo, 2005). N. multiformis is an amonia-oxidizing bacterium common to waste-water treatment facilities. Using NCBI we blasted it's genome for a signaling sequence found on the DsbA protein, common to E. Coli., and were able to find a match. The sequence will enable Dispersin to be exported from N. multiformis and act to degrade problematic biofilm in the reactors.

Design Notes

The DsbA signaling sequence was attached to the Dispersin B gene using PCR. Due to the length of the forward primer, overlap extension PCR was used to piece it together prior to attaching it to the Dispersin Gene.

Part Schematic

Ribbon Diagram

Source

The Dispersin B DNA was aquired from part BBa_K1195000. The signaling sequence was simply ordered along with our primers. Dispersin B was originally discovered in Aggregatibacter actinomycetemcomitans, a pathogenic bacteria which causes gum disease. The bacteria uses excreted Dispersin B protein to disperse it's own biofilm formations, and enable it to spread to other locations (Kaplan, Ragunath,Ramasubbu,& Fine, 2003).

References

  1. Itoh, Y., Wang, X., Hinnebusch, B. J., Preston, J. F., & Romeo, T. (2005). Depolymerization of -1,6-N-Acetyl-D-Glucosamine Disrupts the Integrity of Diverse Bacterial Biofilms. Journal of Bacteriology. doi:10.1128/JB.187.1.382-387.2005
  2. Kaplan, J. B., Ragunath, C., Ramasubbu, N., & Fine, D. H. (2003). Detachment of Actinobacillus actinomycetemcomitans Biofilm Cells by an Endogenous Hexosaminidase Activity. Journal of Bacteriology. doi:10.1128/JB.185.16.4693-4698.2003

BBa_K1356003 Nitrite Reductase (nirS) from Pseudomonas aeruginosa PAO1 DNA in pSB1C3 plasmid backbone Created by: Cameron Sargent

Description

This gene codes for the nitrite reductase (nirS) that converts nitrite (NO2-) into nitric oxide (NO). This conversion is the first step in the denitrification pathway from nitrite (NO2-) to nitrogen gas (N2). Please refer to this image for a schematic of the denitrification pathway.

Design Notes

This gene was cloned from Pseudomonas aeruginosa PAO1 genomic DNA into pSB1C3 using the XbaI and SpeI restriction sites. Correct sequence and orientation were confirmed using 454 Pyrosequencing (BYU).

Source

This gene was cloned from Pseudomonas aeruginosa PAO1 genomic DNA, which was isolated from a bacterial stock provided by Dr. Stephen Lory at Harvard Medical School in Boston.

References

  1. Z. Chen et al., Differentiated response of denitrifying communities to fertilization regime in paddy soil. Microbial ecology 63, 446 (Feb, 2012).
  2. H. Arai, Regulation and Function of Versatile Aerobic and Anaerobic Respiratory Metabolism in Pseudomonas aeruginosa. Frontiers in microbiology 2, 103 (2011).
  3. V. Kathiravan, Pseudomonas aeruginosa and Achromobacter sp.: nitrifying aerobic denitrifiers have a plasmid encoding for denitrifying functional genes. World journal of microbiology & biotechnology 30, 1187 (2014).
BBa_K1356004 Nitric oxide reductase (norC) from Pseudomonas aeruginosa PAO1 DNA in pSB1C3 plasmid backbone Created by: Cameron Sargent

Description

This gene codes for one of the nitric oxide reductase subunits (norC) that, in connection with the other subunit (norB), converts nitric oxide (NO) into nitrous oxide (N2O). This conversion is the second step in the denitrification pathway from nitrite (NO2-) to nitrogen gas (N2). Please refer to this image for a schematic of the denitrification pathway.

Design Notes

This gene was cloned from Pseudomonas aeruginosa PAO1 genomic DNA into pSB1C3 using the XbaI and SpeI restriction sites. Correct sequence and orientation were confirmed using 454 Pyrosequencing (BYU).

Source

This gene was cloned from Pseudomonas aeruginosa PAO1 genomic DNA, which was isolated from a bacterial stock provided by Dr. Stephen Lory at Harvard Medical School in Boston.

References

  1. Z. Chen et al., Differentiated response of denitrifying communities to fertilization regime in paddy soil. Microbial ecology 63, 446 (Feb, 2012).
  2. H. Arai, Regulation and Function of Versatile Aerobic and Anaerobic Respiratory Metabolism in Pseudomonas aeruginosa. Frontiers in microbiology 2, 103 (2011).
  3. V. Kathiravan, Pseudomonas aeruginosa and Achromobacter sp.: nitrifying aerobic denitrifiers have a plasmid encoding for denitrifying functional genes. World journal of microbiology & biotechnology 30, 1187 (2014).
BBa_K1356005 Nitric oxide reductase (norB) from Pseudomonas aeruginosa PAO1 DNA in pSB1C3 plasmid backbone Created by: Cameron Sargent

Description

This gene codes for one of the nitric oxide reductase subunits (norB) that, in connection with the other subunit (norC), converts nitric oxide (NO) into nitrous oxide (N2O). This conversion is the second step in the denitrification pathway from nitrite (NO2-) to nitrogen gas (N2). Please refer to this image for a schematic of the denitrification pathway.

Design Notes

This gene was cloned from Pseudomonas aeruginosa PAO1 genomic DNA into pSB1C3 using the XbaI and SpeI restriction sites. Correct sequence and orientation were confirmed using 454 Pyrosequencing (BYU). The original sequence contained PstI sites starting at bases 115 and 1,231. These sequences were changed to CTTCAG and CTACAG, respectively, using site-specific mutagenesis; the mutant sites were verified to code for the same amino acids. Mutagenesis was also confirmed using 454 Pyrosequencing (BYU).

pSB1C3 Plasmid with norB insert:

Source

This gene was cloned from Pseudomonas aeruginosa PAO1 genomic DNA, which was isolated from a bacterial stock provided by Dr. Stephen Lory at Harvard Medical School in Boston.

References

  1. Z. Chen et al., Differentiated response of denitrifying communities to fertilization regime in paddy soil. Microbial ecology 63, 446 (Feb, 2012).
  2. H. Arai, Regulation and Function of Versatile Aerobic and Anaerobic Respiratory Metabolism in Pseudomonas aeruginosa. Frontiers in microbiology 2, 103 (2011).
  3. V. Kathiravan, Pseudomonas aeruginosa and Achromobacter sp.: nitrifying aerobic denitrifiers have a plasmid encoding for denitrifying functional genes. World journal of microbiology & biotechnology 30, 1187 (2014).
BBa_K1356006 Nitrous oxide reductase (nosZ) from Pseudomonas aeruginosa PAO1 DNA in pSB1C3 plasmid backbone Created by: Cameron Sargent

Description

This gene codes for the nitrous oxide reductase (nosZ) that converts nitrous oxide (N2O) into nitrogen gas (N2). This conversion is the third and final step in the denitrification pathway from nitrite (NO2-) to nitrogen gas (N2). Please refer to this image for a schematic of the denitrification pathway.

Design Notes

This gene was cloned from Pseudomonas aeruginosa PAO1 genomic DNA into pSB1C3 using the XbaI and SpeI restriction sites. Correct sequence and orientation were confirmed using 454 Pyrosequencing (BYU). This sequence contains a PstI site starting at base 1845.

Source

This gene was cloned from Pseudomonas aeruginosa PAO1 genomic DNA, which was isolated from a bacterial stock provided by Dr. Stephen Lory at Harvard Medical School in Boston.

References

  1. Z. Chen et al., Differentiated response of denitrifying communities to fertilization regime in paddy soil. Microbial ecology 63, 446 (Feb, 2012).
  2. H. Arai, Regulation and Function of Versatile Aerobic and Anaerobic Respiratory Metabolism in Pseudomonas aeruginosa. Frontiers in microbiology 2, 103 (2011).
  3. V. Kathiravan, Pseudomonas aeruginosa and Achromobacter sp.: nitrifying aerobic denitrifiers have a plasmid encoding for denitrifying functional genes. World journal of microbiology & biotechnology 30, 1187 (2014).