Team:NCTU Formosa/biobricks

From 2014.igem.org

(Difference between revisions)
(PBAN5)
(PBAN Spodoptera litura 2 (BBa_K1415105))
 
(198 intermediate revisions not shown)
Line 1: Line 1:
{{:Team:NCTU Formosa/source/head}}
{{:Team:NCTU Formosa/source/head}}
-
{{:Team:NCTU Formosa/source/header-biobricks}}
+
{{:Team:NCTU Formosa/source/header0}}
-
{{:Team:NCTU Formosa/source/header}}
+
{{:Team:NCTU Formosa/source/cover-project}}
-
{{:Team:NCTU Formosa/source/cover-biobricks}}
+
{{:Team:NCTU Formosa/source/card}}
{{:Team:NCTU Formosa/source/card}}
 +
{{:Team:NCTU Formosa/source/header-biobricks}}
__NOTOC__
__NOTOC__
-
<div class="li" style="clear:both"><div class="card">
+
<div class="li" style="clear:both"><div class="card2">
-
===Parts submitted to the Registry===
+
===Parts Submitted to The Registry===
 +
Please click on the name of the parts for detailed information that is hosted in the Registry website.
<groupparts>iGEM014 NCTU_Formosa</groupparts>
<groupparts>iGEM014 NCTU_Formosa</groupparts>
</div>
</div>
</div>
</div>
-
<div class="li" style="clear:both"><div class="card">
+
<div class="li" style="clear:both"><div class="card2">
===Brief Information===
===Brief Information===
-
Please click on the name of the parts for detailed information that is hosted in the Registry website.
+
 
-
====PBAN-producted system====
+
 
-
======PBAN Bombyx mori======
+
=====PBAN ''Bombyx mori'' 1 (BBa_K1415001)=====
-
Peptide Sequence:
+
[[File:Pbanbm.png|176px|link=|frameless|left]]
 +
Peptide Sequence:
LSEDMPATPADQEMYQPDPEEMESRTRYFSPRL
LSEDMPATPADQEMYQPDPEEMESRTRYFSPRL
-
<P>Introduction of Bombyx mori:
+
<P>PBAN(BM)+pSB1C3 This biobrick is the PBAN of ''Bombyx mori'' on the pSB1C3 backbone.</P>
-
Silkworm is not a kind of pest. This special creature can produce raw silk, which makes them take an important position in the history of human economic life and agricultural culture. It is easy to feed and to obtain.</P>
+
<h1></h1>
 +
=====PBAN ''Bombyx mori'' 2 (BBa_K1415101)=====
 +
[[File:HALFBM.png|457px|link=|frameless|left]]
 +
<P>P<sub>cons</sub>(BBa_J23101) + RBS(BBa_B0034) + PBAN(BM)
 +
This circuit is responsible for '''producing the ''Bombyx mori''’s PBAN'''. As ''Bombyx mori'' PBAN is ingested by the female ''Bombyx mori'', the female ''Bombyx mori'' will produce its own sex pheromone and attract male ''Bombyx moris''. </P>
 +
<h2></h2>
-
======PBAN Mamestra brassicae======
+
=====PBAN ''Bombyx mori'' 3 (BBa_K1415201)=====
-
Peptide Sequence:
+
[[File:ALLBM.png|780px|link=|frameless|left]]
 +
<P>P<sub>cons</sub>(BBa_J23101) + RBS(BBa_B0034) + PBAN(BM) + RBS(BBa_B0034) + BFP(BBa_K592100)+ Ter(BBa_J61048)
 +
The above circuit is constructed mainly to test whether it produces ''Bombyx mori''’s PBAN.
 +
If the circuit do work, it would result in the expression of the BFP gene and emission of blue fluorescent light. </p>
 +
<h1></h1>
 +
=====PBAN ''Mamestra brassicae'' 1 (BBa_K1415002)=====
 +
[[File:MB.png|276px|link=|frameless|left]]
 +
Peptide Sequence:
LADDMPATPADQEMYRPDPEQIDSRTKYFSPRL
LADDMPATPADQEMYRPDPEQIDSRTKYFSPRL
-
 
+
<P>PBAN(MB)+pSB1C3 This biobrick is the PBAN of ''Mamestra brassicae'' on the pSB1C3 backbone.</P>
-
<P>Introduction of Mamestra brassicae:Mamestra brassicae can eat up over 100 species of vegetables such as cauliflower, cabbage, radish, rape, eggplant fruit, beans, melons, potatoes and so on.</P>
+
<h1></h1>
-
 
+
=====''PBAN Mamestra brassicae'' 2 (BBa_K1415102)=====
-
======PBAN Agrotis ipsilon======
+
[[File:HALFMB.png|457px|link=|frameless|left]]
-
Peptide Sequence:
+
<P>P<sub>cons</sub>(BBa_J23101) + RBS(BBa_B0034) + PBAN(MB)
 +
This circuit is responsible for '''producing the ''Mamestra brassicae’s'' PBAN'''. As ''Mamestra brassicae’s'' PBAN is ingested by the female ''Mamestra brassicae'', the female ''Mamestra brassicae'' will produce its own sex pheromone and attract male ''Mamestra brassicaes''. </P>
 +
<h1></h1>
 +
=====PBAN ''Mamestra brassicae'' 3 (BBa_K1415202)=====
 +
[[File:ALLMB.png|780px|link=|frameless|left]]
 +
<P>P<sub>cons</sub>(BBa_J23101) + RBS(BBa_B0034) + PBAN(MB) + RBS(BBa_B0034) + BFP(BBa_K592100)+ Ter(BBa_J61048)
 +
The above circuit is constructed mainly to test whether it produces ''Mamestra brassicae''’s PBAN.
 +
If the circuit do work, it would result in the expression of the BFP gene and emission of blue fluorescent light.
 +
</P>
 +
<h1></h1>
 +
=====PBAN ''Agrotis ipsilon'' 1 (BBa_K1415003)=====
 +
[[File:AI.png|276px|link=|frameless|left]]
 +
Peptide Sequence:
LADDTPATPADQEMYRPDPEQIDSRTKYFSPRL
LADDTPATPADQEMYRPDPEQIDSRTKYFSPRL
-
 
+
<P>PBAN(AI)+pSB1C3 This biobrick is the PBAN of ''Agrotis ipsilon'' on the pSB1C3 backbone.</P>
-
<P>Introduction of Agrotis ipsilon:Agrotis ipsilon can harm hundreds of species of plants, so it is a harmful pest to agriculture. They harm larch, pine, ash, Manchurian walnut, pine, fir, mulberry, tea , Elaeagnus, fruit trees and many other seedlings.</P>
+
<h1></h1>
-
 
+
=====PBAN ''Agrotis ipsilon'' 2 (BBa_K1415103)=====
-
======PBAN Lymantria dispar======
+
[[File:HALFAI.png|457px|link=|frameless|left]]
-
Peptide Sequence:
+
<P>P<sub>cons</sub>(BBa_J23101) + RBS(BBa_B0034) + PBAN(AI)
 +
This circuit is responsible for '''producing the ''Agrotis ipsilon''’s PBAN'''. As ''Agrotis ipsilon''’s PBAN is ingested by the female ''Agrotis ipsilon'', the female ''Agrotis ipsilon'' will produce its own sex pheromone and attract male ''Agrotis ipsilons''.</P>
 +
<h1></h1>
 +
=====PBAN ''Agrotis ipsilon'' 3 (BBa_K1415203)=====
 +
[[File:ALLAI.png|780px|link=|frameless|left]]
 +
<P>P<sub>cons</sub>(BBa_J23101) + RBS(BBa_B0034) + PBAN(AI) + RBS(BBa_B0034) + BFP(BBa_K592100)+ Ter(BBa_J61048)
 +
The above circuit is constructed mainly to test whether it produces ''Agrotis ipsilon''’s PBAN.
 +
If the circuit do work, it would result in the expression of the BFP gene and emission of blue fluorescent light.
 +
</P>
 +
<h1></h1>
 +
=====PBAN ''Lymantria dispar'' 1 (BBa_K1415004)=====
 +
[[File:LD.png|276px|link=|frameless|left]]
 +
Peptide Sequence:
LADDMPATMADQEVYRPEPEQIDSRNKUFSPRL
LADDMPATMADQEVYRPEPEQIDSRNKUFSPRL
-
<P>Introduction of Lymantria dispar:Lymantria dispar is one of the most destructive pests of fruit trees throughout the Northern Hemisphere. It is also a major pest to broad leaved forest. Larvae of Lymantria dispar can cause severe leaves loss, resulting in growth retardation and even trees’ death. Moreover, its larvae and eggs can cause some allergies.</P>
+
<P>PBAN(AI)+pSB1C3 This biobrick is the PBAN of ''Lymantria dispar'' on the pSB1C3 backbone.</P>
 +
<h1></h1>
 +
=====PBAN ''Lymantria dispar'' 2 (BBa_K1415104)=====
 +
[[File:HALFLD.png|457px|link=|frameless|left]]
 +
<P>P<sub>cons</sub>(BBa_J23101) + RBS(BBa_B0034) + PBAN(LD)
 +
This circuit is responsible for''' producing ''Lymantria dispar''’s PBAN'''. As ''Lymantria dispar'' PBAN is ingested by the female ''Lymantria dispar'', the female ''Lymantria dispar'' will produce its own sex pheromone and attract male ''Lymantria dispars''.</P>
 +
<h1></h1>
 +
=====PBAN ''Lymantria dispar'' 3 (BBa_K1415204)=====
 +
[[File:ALLLD.png|780px|link=|frameless|left]]
 +
<P>P<sub>cons</sub>(BBa_J23101) + RBS(BBa_B0034) + PBAN(LD) + RBS(BBa_B0034) + BFP(BBa_K592100)+ Ter(BBa_J61048)
 +
The above circuit is constructed mainly to test whether it produces ''Lymantria dispar''’s PBAN.
 +
If the circuit do work, it would result in the expression of the BFP gene and the emission of blue fluorescent light.
-
======PBAN Spodoptera litura======
+
</P>
-
Peptide Sequence:
+
<h1></h1>
 +
=====PBAN ''Spodoptera litura'' 1 (BBa_K1415005)=====
 +
[[File:SL.png|276px|link=|frameless|left]]
 +
Peptide Sequence:
LADDMPATPADQELYRPDPDQIDSRTKUFSPRL
LADDMPATPADQELYRPDPDQIDSRTKUFSPRL
-
<P>Introduction of Spodoptera litura:Larvae are nocturnal, omnivorous.They can harm a variety of crops such as leafy vegetables, garland chrysanthemum, groundnuts, Sesbania, soybeans, red beans, green onions, corn, flowers, fruits and Indian jujube, papayas and other fruit trees and other crops; larvae eat great, they will chew on the leaves of plants, often resulting in serious problems.</P>
+
<P>PBAN(SL)+pSB1C3 This biobrick is the PBAN of ''Spodoptera litura'' on the pSB1C3 backbone.</P>
-
 
+
<h1></h1>
-
======PBAN6======
+
=====PBAN ''Spodoptera litura'' 2 (BBa_K1415105)=====
-
*By using mGFP as a reporter gene, we can test whether the 37 °C RBS works.
+
[[File:HALFSL.png|457px|link=|frameless|left]]
-
<br>[[File:NCTU_Formosa_2014_Biobrick6.jpg|200px]]
+
<P>P<sub>cons</sub>(BBa_J23101) + RBS(BBa_B0034) + PBAN(SL)
-
 
+
This circuit is responsible for '''producing the ''Spodoptera litura''’s PBAN'''. As ''Spodoptera litura'' PBAN is ingested by the female ''Spodoptera litura'', the female ''Spodoptera litura'' will produce its own sex pheromone and attract male ''Spodoptera lituras''.</P>
-
======PBAN7======
+
<h1></h1>
-
*In our circuit, this biobrick is the part of P<sub>lux</sub>'s activation when the temperature reaches to 37<sup>o</sup>C.
+
-
<br>
+
-
[[File:NCTU_Formosa_2014_Biobrick7.jpg|200px]]
+
-
 
+
-
 
+
-
======PBAN8======
+
-
*The sRNA is the complement of its rRBS. It can regulate the downstream of rRBS in RNA level by binding onto the rRBS when it is transcribed in order to interrupt ribosomes' work. In addition, adding Plux upstream makes the sequence be controlled by luxR/AHL complex.<br>
+
-
[[File:NCTU_Formosa_2014_Biobrick8.jpg|250px]]
+
-
 
+
-
======PBAN9======
+
-
*The sRNA is the complement of its rRBS. It can regulate the downstream of rRBS in RNA level by binding onto the rRBS when it is transcribed in order to interrupt ribosomes' work.
+
-
<br>[[File:NCTU_Formosa_2014_Biobrick9.jpg|200px]]
+
-
 
+
 +
=====PBAN ''Spodoptera litura'' 3 (BBa_K1415205)=====
 +
[[File:ALLSL.png|780px|link=|frameless|left]]
 +
<P>P<sub>cons</sub>(BBa_J23101) + RBS(BBa_B0034) + PBAN(SL) + RBS(BBa_B0034) + BFP(BBa_K592100)+ Ter(BBa_J61048)
 +
The above circuit is constructed mainly to test whether it produces ''Spodoptera litura''’s PBAN.
 +
If the circuit do work, it would result in the expression of the BFP gene and the emission of blue fluorescent light.
 +
</P>
 +
<h1></h1>
 +
=====PBAN ''Helicoverpa armigera Hubner'' 1 (BBa_K1415006)=====
 +
[[File:HAH.png|276px|link=|frameless|left]]
 +
Peptide Sequence:
 +
LSDDMPARPADQEMYRQDPEQIDSRTKYFSPRL
 +
<P>PBAN(HAH)+pSB1C3 This biobrick is the PBAN of ''Helicoverpa armigera Hubner'' on the pSB1C3 backbone.</P>
 +
<h1></h1>
 +
=====PBAN ''Helicoverpa armigera Hubner'' 2 (BBa_K1415106)=====
 +
[[File:HALFHAH.png|457px|link=|frameless|left]]
 +
<P>P<sub>cons</sub>(BBa_J23101) + RBS(BBa_B0034) + PBAN(HAH)
 +
This circuit is responsible for''' producing the ''Helicoverpa armigera Hubner''’s PBAN'''. As ''Helicoverpa armigera Hubner''’s PBAN is ingested by the female ''Helicoverpa armigera Hubner'', the female ''Helicoverpa armigera Hubner'' will produce its own sex pheromone and attract male ''Helicoverpa armigera Hubner''s.</P>
 +
<h1></h1>
 +
=====PBAN ''Helicoverpa armigera Hubner'' 3 (BBa_K1415206)=====
 +
[[File:ALLHAH.png|780px|link=|frameless|left]]
 +
<P>P<sub>cons</sub>(BBa_J23101) + RBS(BBa_B0034) + PBAN(HAH) + RBS(BBa_B0034) + BFP(BBa_K592100)+ Ter(BBa_J61048)
 +
The above circuit is constructed mainly to test whether it produces ''Helicoverpa armigera Hubner''’s PBAN.
 +
If the circuit do work, it would result in the expression of the BFP gene and the emission of blue fluorescent light.
 +
</P>
 +
<h1></h1>
 +
=====PBAN ''Adoxophyes sp.'' 1 (BBa_K1415007)=====
 +
[[File:AS.png|276px|link=|frameless|left]]
 +
Peptide Sequence:
 +
QSEAVTSSDEQVYRQDMSPVDGRLKYFSPRL
 +
<P>PBAN(AS)+pSB1C3 This biobrick is the PBAN of ''Adoxophyes sp.'' on the pSB1C3 backbone.</P>
 +
<h1></h1>
 +
=====PBAN ''Adoxophyes sp.'' 2 (BBa_K1415107)=====
 +
[[File:HALFAS.png|457px|link=|frameless|left]]
 +
<P>P<sub>cons</sub>(BBa_J23101) + RBS(BBa_B0034) + PBAN(AS)
 +
This circuit is responsible for '''producing the ''Adoxophyes sp.''’s PBAN'''. As ''Adoxophyes sp.''’s PBAN is ingested by the female ''Adoxophyes sp.'', the female ''Adoxophyes sp.'' will produce its own sex pheromone and attract male ''Adoxophyes sp.''</P>
 +
<h1></h1>
 +
=====PBAN ''Adoxophyes sp.'' 3 (BBa_K1415207)=====
 +
[[File:ALLAS.png|780px|link=|frameless|left]]
 +
<P>P<sub>cons</sub>(BBa_J23101) + RBS(BBa_B0034) + PBAN(AS) + RBS(BBa_B0034) + BFP(BBa_K592100)+ Ter(BBa_J61048)
 +
The above circuit is constructed mainly to test whether it produces ''Adoxophyes sp.''’s PBAN.
 +
If the circuit do work, it would result in the expression of the BFP gene and the emission of blue fluorescent light.
 +
</P>
 +
<h1></h1>
 +
=====PBAN ''Solenopsis invicta'' 1 (BBa_K1415008)=====
 +
[[File:SI.png|276px|link=|frameless|left]]
 +
Peptide Sequence:
 +
GSGEDLSYGDAYEVDEDDHPLFVPR
 +
<P>PBAN(SI)+pSB1C3 This biobrick is the PBAN of ''Solenopsis invicta'' on the pSB1C3 backbone.</P>
 +
<h1></h1>
 +
=====PBAN ''Solenopsis invicta'' 2 (BBa_K1415108)=====
 +
[[File:HALFSI.png|457px|link=|frameless|left]]
 +
<P>P<sub>cons</sub>(BBa_J23101) + RBS(BBa_B0034) + PBAN(SI)
 +
This circuit is responsible for '''producing the ''Solenopsis invicta''’s PBAN'''. As ''Solenopsis invicta''’s PBAN is ingested by the female ''Solenopsis invicta'', the female ''Solenopsis invicta'' will produce its own sex pheromone and attract male ''Solenopsis invicta''s.</P>
 +
<h1></h1>
 +
=====PBAN ''Solenopsis invicta'' 3 (BBa_K1415208)=====
 +
[[File:ALLSI.png|780px|link=|frameless|left]]
 +
<P>P<sub>cons</sub>(BBa_J23101) + RBS(BBa_B0034) + PBAN(SI) + RBS(BBa_B0034) + BFP(BBa_K592100)+ Ter(BBa_J61048)
 +
The above circuit is constructed mainly to test whether it produces ''Solenopsis invicta'' PBAN.
 +
If the circuit do work, it would result in the expression of the BFP gene and the emission of blue fluorescent light.
 +
</P>
 +
<h1></h1>
 +
=====PBAN ''Aedes aegypti'' 1 (BBa_K1415009)=====
 +
[[File:AA.png|276px|link=|frameless|left]]
 +
Peptide Sequence:
 +
DASSSNENNSRPPFAPRL
 +
<P>PBAN(AA)+pSB1C3 This biobrick is the PBAN of ''Aedes aegypti'' on the pSB1C3 backbone.</P>
 +
<h1></h1>
 +
=====PBAN ''Aedes aegypti'' 2 (BBa_K1415109)=====
 +
[[File:HALFAA.png|457px|link=|frameless|left]]
 +
<P>P<sub>cons</sub>(BBa_J23101) + RBS(BBa_B0034) + PBAN(AA)
 +
This circuit is responsible for '''producing the ''Aedes aegypti''’s PBAN'''. As ''Aedes aegypti''’s PBAN is ingested by the female ''Aedes aegypti'', the female ''Aedes aegypti'' will produce its own sex pheromone and attract male ''Aedes aegyptis''.</P>
 +
<h1></h1>
 +
=====PBAN ''Aedes aegypti'' 3 (BBa_K1415209)=====
 +
[[File:ALLAA.png|780px|link=|frameless|left]]
 +
<P>P<sub>cons</sub>(BBa_J23101) + RBS(BBa_B0034) + PBAN(AA) + RBS(BBa_B0034) + BFP(BBa_K592100)+ Ter(BBa_J61048)
 +
The above circuit is constructed mainly to test whether it produces ''Aedes aegypti''’s PBAN.
 +
If the circuit do work, it would result in the expression of the BFP gene and the emission of blue fluorescent light.</p>
 +
<h1></h1>
  </div>
  </div>
  </div>
  </div>
-
<html>
 
-
  </div>
 
-
</div>
 
-
  </div>
 
-
</div>
 
-
<div id="footer-wrapper">
 
-
  <div id="footer"> <div id="footer-text">
 
-
    <p>2013 NCTU_Formosa</p>
 
-
    <p class="author">Website designed by Calvin Hue.</p>
 
-
    <p>Cover image credit: <a href="http://www.dvq.co.nz/" target="_blank">DVQ</a></p>
 
-
    </div> </div>
 
-
</div>
 

Latest revision as of 02:25, 18 October 2014

Project

Change the font size right here

Parts Submitted to The Registry

Please click on the name of the parts for detailed information that is hosted in the Registry website. <groupparts>iGEM014 NCTU_Formosa</groupparts>

Brief Information

PBAN Bombyx mori 1 (BBa_K1415001)
Pbanbm.png

Peptide Sequence: LSEDMPATPADQEMYQPDPEEMESRTRYFSPRL

PBAN(BM)+pSB1C3 This biobrick is the PBAN of Bombyx mori on the pSB1C3 backbone.

PBAN Bombyx mori 2 (BBa_K1415101)
HALFBM.png

Pcons(BBa_J23101) + RBS(BBa_B0034) + PBAN(BM) This circuit is responsible for producing the Bombyx mori’s PBAN. As Bombyx mori PBAN is ingested by the female Bombyx mori, the female Bombyx mori will produce its own sex pheromone and attract male Bombyx moris.

PBAN Bombyx mori 3 (BBa_K1415201)
ALLBM.png

Pcons(BBa_J23101) + RBS(BBa_B0034) + PBAN(BM) + RBS(BBa_B0034) + BFP(BBa_K592100)+ Ter(BBa_J61048) The above circuit is constructed mainly to test whether it produces Bombyx mori’s PBAN. If the circuit do work, it would result in the expression of the BFP gene and emission of blue fluorescent light.

PBAN Mamestra brassicae 1 (BBa_K1415002)
MB.png

Peptide Sequence: LADDMPATPADQEMYRPDPEQIDSRTKYFSPRL

PBAN(MB)+pSB1C3 This biobrick is the PBAN of Mamestra brassicae on the pSB1C3 backbone.

PBAN Mamestra brassicae 2 (BBa_K1415102)
HALFMB.png

Pcons(BBa_J23101) + RBS(BBa_B0034) + PBAN(MB) This circuit is responsible for producing the Mamestra brassicae’s PBAN. As Mamestra brassicae’s PBAN is ingested by the female Mamestra brassicae, the female Mamestra brassicae will produce its own sex pheromone and attract male Mamestra brassicaes.

PBAN Mamestra brassicae 3 (BBa_K1415202)
ALLMB.png

Pcons(BBa_J23101) + RBS(BBa_B0034) + PBAN(MB) + RBS(BBa_B0034) + BFP(BBa_K592100)+ Ter(BBa_J61048) The above circuit is constructed mainly to test whether it produces Mamestra brassicae’s PBAN. If the circuit do work, it would result in the expression of the BFP gene and emission of blue fluorescent light.

PBAN Agrotis ipsilon 1 (BBa_K1415003)
AI.png

Peptide Sequence: LADDTPATPADQEMYRPDPEQIDSRTKYFSPRL

PBAN(AI)+pSB1C3 This biobrick is the PBAN of Agrotis ipsilon on the pSB1C3 backbone.

PBAN Agrotis ipsilon 2 (BBa_K1415103)
HALFAI.png

Pcons(BBa_J23101) + RBS(BBa_B0034) + PBAN(AI) This circuit is responsible for producing the Agrotis ipsilon’s PBAN. As Agrotis ipsilon’s PBAN is ingested by the female Agrotis ipsilon, the female Agrotis ipsilon will produce its own sex pheromone and attract male Agrotis ipsilons.

PBAN Agrotis ipsilon 3 (BBa_K1415203)
ALLAI.png

Pcons(BBa_J23101) + RBS(BBa_B0034) + PBAN(AI) + RBS(BBa_B0034) + BFP(BBa_K592100)+ Ter(BBa_J61048) The above circuit is constructed mainly to test whether it produces Agrotis ipsilon’s PBAN. If the circuit do work, it would result in the expression of the BFP gene and emission of blue fluorescent light.

PBAN Lymantria dispar 1 (BBa_K1415004)
LD.png

Peptide Sequence: LADDMPATMADQEVYRPEPEQIDSRNKUFSPRL

PBAN(AI)+pSB1C3 This biobrick is the PBAN of Lymantria dispar on the pSB1C3 backbone.

PBAN Lymantria dispar 2 (BBa_K1415104)
HALFLD.png

Pcons(BBa_J23101) + RBS(BBa_B0034) + PBAN(LD) This circuit is responsible for producing Lymantria dispar’s PBAN. As Lymantria dispar PBAN is ingested by the female Lymantria dispar, the female Lymantria dispar will produce its own sex pheromone and attract male Lymantria dispars.

PBAN Lymantria dispar 3 (BBa_K1415204)
ALLLD.png

Pcons(BBa_J23101) + RBS(BBa_B0034) + PBAN(LD) + RBS(BBa_B0034) + BFP(BBa_K592100)+ Ter(BBa_J61048) The above circuit is constructed mainly to test whether it produces Lymantria dispar’s PBAN. If the circuit do work, it would result in the expression of the BFP gene and the emission of blue fluorescent light.

PBAN Spodoptera litura 1 (BBa_K1415005)
SL.png

Peptide Sequence: LADDMPATPADQELYRPDPDQIDSRTKUFSPRL

PBAN(SL)+pSB1C3 This biobrick is the PBAN of Spodoptera litura on the pSB1C3 backbone.

PBAN Spodoptera litura 2 (BBa_K1415105)
HALFSL.png

Pcons(BBa_J23101) + RBS(BBa_B0034) + PBAN(SL) This circuit is responsible for producing the Spodoptera litura’s PBAN. As Spodoptera litura PBAN is ingested by the female Spodoptera litura, the female Spodoptera litura will produce its own sex pheromone and attract male Spodoptera lituras.

PBAN Spodoptera litura 3 (BBa_K1415205)
ALLSL.png

Pcons(BBa_J23101) + RBS(BBa_B0034) + PBAN(SL) + RBS(BBa_B0034) + BFP(BBa_K592100)+ Ter(BBa_J61048) The above circuit is constructed mainly to test whether it produces Spodoptera litura’s PBAN. If the circuit do work, it would result in the expression of the BFP gene and the emission of blue fluorescent light.

PBAN Helicoverpa armigera Hubner 1 (BBa_K1415006)
HAH.png

Peptide Sequence: LSDDMPARPADQEMYRQDPEQIDSRTKYFSPRL

PBAN(HAH)+pSB1C3 This biobrick is the PBAN of Helicoverpa armigera Hubner on the pSB1C3 backbone.

PBAN Helicoverpa armigera Hubner 2 (BBa_K1415106)
HALFHAH.png

Pcons(BBa_J23101) + RBS(BBa_B0034) + PBAN(HAH) This circuit is responsible for producing the Helicoverpa armigera Hubner’s PBAN. As Helicoverpa armigera Hubner’s PBAN is ingested by the female Helicoverpa armigera Hubner, the female Helicoverpa armigera Hubner will produce its own sex pheromone and attract male Helicoverpa armigera Hubners.

PBAN Helicoverpa armigera Hubner 3 (BBa_K1415206)
ALLHAH.png

Pcons(BBa_J23101) + RBS(BBa_B0034) + PBAN(HAH) + RBS(BBa_B0034) + BFP(BBa_K592100)+ Ter(BBa_J61048) The above circuit is constructed mainly to test whether it produces Helicoverpa armigera Hubner’s PBAN. If the circuit do work, it would result in the expression of the BFP gene and the emission of blue fluorescent light.

PBAN Adoxophyes sp. 1 (BBa_K1415007)
AS.png

Peptide Sequence: QSEAVTSSDEQVYRQDMSPVDGRLKYFSPRL

PBAN(AS)+pSB1C3 This biobrick is the PBAN of Adoxophyes sp. on the pSB1C3 backbone.

PBAN Adoxophyes sp. 2 (BBa_K1415107)
HALFAS.png

Pcons(BBa_J23101) + RBS(BBa_B0034) + PBAN(AS) This circuit is responsible for producing the Adoxophyes sp.’s PBAN. As Adoxophyes sp.’s PBAN is ingested by the female Adoxophyes sp., the female Adoxophyes sp. will produce its own sex pheromone and attract male Adoxophyes sp.

PBAN Adoxophyes sp. 3 (BBa_K1415207)
ALLAS.png

Pcons(BBa_J23101) + RBS(BBa_B0034) + PBAN(AS) + RBS(BBa_B0034) + BFP(BBa_K592100)+ Ter(BBa_J61048) The above circuit is constructed mainly to test whether it produces Adoxophyes sp.’s PBAN. If the circuit do work, it would result in the expression of the BFP gene and the emission of blue fluorescent light.

PBAN Solenopsis invicta 1 (BBa_K1415008)
SI.png

Peptide Sequence: GSGEDLSYGDAYEVDEDDHPLFVPR

PBAN(SI)+pSB1C3 This biobrick is the PBAN of Solenopsis invicta on the pSB1C3 backbone.

PBAN Solenopsis invicta 2 (BBa_K1415108)
HALFSI.png

Pcons(BBa_J23101) + RBS(BBa_B0034) + PBAN(SI) This circuit is responsible for producing the Solenopsis invicta’s PBAN. As Solenopsis invicta’s PBAN is ingested by the female Solenopsis invicta, the female Solenopsis invicta will produce its own sex pheromone and attract male Solenopsis invictas.

PBAN Solenopsis invicta 3 (BBa_K1415208)
ALLSI.png

Pcons(BBa_J23101) + RBS(BBa_B0034) + PBAN(SI) + RBS(BBa_B0034) + BFP(BBa_K592100)+ Ter(BBa_J61048) The above circuit is constructed mainly to test whether it produces Solenopsis invicta PBAN. If the circuit do work, it would result in the expression of the BFP gene and the emission of blue fluorescent light.

PBAN Aedes aegypti 1 (BBa_K1415009)
AA.png

Peptide Sequence: DASSSNENNSRPPFAPRL

PBAN(AA)+pSB1C3 This biobrick is the PBAN of Aedes aegypti on the pSB1C3 backbone.

PBAN Aedes aegypti 2 (BBa_K1415109)
HALFAA.png

Pcons(BBa_J23101) + RBS(BBa_B0034) + PBAN(AA) This circuit is responsible for producing the Aedes aegypti’s PBAN. As Aedes aegypti’s PBAN is ingested by the female Aedes aegypti, the female Aedes aegypti will produce its own sex pheromone and attract male Aedes aegyptis.

PBAN Aedes aegypti 3 (BBa_K1415209)
ALLAA.png

Pcons(BBa_J23101) + RBS(BBa_B0034) + PBAN(AA) + RBS(BBa_B0034) + BFP(BBa_K592100)+ Ter(BBa_J61048) The above circuit is constructed mainly to test whether it produces Aedes aegypti’s PBAN. If the circuit do work, it would result in the expression of the BFP gene and the emission of blue fluorescent light.