Team:TU Delft-Leiden/Modeling

From 2014.igem.org

(Difference between revisions)
 
(145 intermediate revisions not shown)
Line 1: Line 1:
-
{{CSS/Main_custom}}
+
{{CSS/Delft2014_main}}
{{CSS/960_12_col}}
{{CSS/960_12_col}}
 +
{{:Team:TU_Delft-Leiden/Templates/Start}}
-
<!--PAGE HEAD----------------->
+
{{:Team:TU_Delft-Leiden/Templates/stylemod}}
-
<html>
+
<html>          
-
    <head>
+
<body>
-
<title>iGEM TU Delft Leiden 2014</title>
+
<div class='grid_12'>
-
<base href="https://2014.igem.org"/>
+
 
-
<link rel="stylesheet" type="text/css" href="Maincustom.css">
+
<h2> Modeling Overview</h2>
-
<link rel="stylesheet" type="text/css" href="960_12_col.css" >
+
 
-
    </head>
+
<p>We developed models for each of the three different modules of our project: the <a href="https://2014.igem.org/Team:TU_Delft-Leiden/Modeling/Curli">conductive curli module</a>, the <a href="https://2014.igem.org/Team:TU_Delft-Leiden/Modeling/EET">extracellular electron transport (EET) module</a> and the <a href="https://2014.igem.org/Team:TU_Delft-Leiden/Modeling/Landmine">landmine detection module</a>. <br>
-
   
+
For the conductive curli module, we wanted to know if a conductive path between two electrodes of a chip filled with curli growing <i> E. coli </i> arise at a certain point in time. We also wanted to make quantitative predictions about the resistance between the two electrodes of our system in time. <br>
-
<!--HEADER----------------->  
+
For the EET module, our goal was to investigate the carbon metabolism providing the electrons for the EET module. Also, we want the EET pathway used by the cells in order to have a measurable electrical signal for our biosensor, see the <a href="https://2014.igem.org/Team:TU_Delft-Leiden/Project/Gadget">gadget section</a> of our wiki. Furthermore, in our modeling of the assembly of the EET complex, we wanted to predict how many EET complexes are formed under different initial conditions. We focused, in addition to the assembly mechanism, also on the apparent reduced cell viability.<br>
-
 
+
For the landmine module, we tried to find a model which would be able to reproduce the response curves of both the landmine promoters, as found in [1]. <br>
-
  <div class="container_12" id="header">
+
For the EET and landmine modules, we used deterministic modeling. For the curli module, we used a stochastic modeling approach, and considered the system at the gene, cell and colony level. At the colony levvel, we employed <a href="https://2014.igem.org/Team:TU_Delft-Leiden/Modeling/Techniques#PercolationTheory">percolation theory</a> in order to predict if a conductive path between the two electrodes arise at a certain point in time and to predict at which time this happens. Our application of percolation theory to describe the formation of a conductive biological network represents a novel approach that has not been used in the literature before.
-
    <div id="charbanner">
+
</p>
-
  <img src="/wiki/images/a/a4/Delt2014_Plug_and_play_character.png"height = 130 alt= "no image"</img>
+
 
-
  </div>
+
<br>
-
    </div>  
+
 
-
    <div class="container_12" id='main'>
+
<p>
-
     
+
We used Matlab for most of the calculations; the scripts we made can be found in the <a href="/Team:TU_Delft-Leiden/Modeling/CodeRepository">Code Repository</a>. We had great interactions with the Life Science and Microfluidics departments, which for the conductive curli module can be read <a href="https://2014.igem.org/Team:TU_Delft-Leiden/Project/Life_science/curli/integration">here</a>, for the EET module can be read <a href="https://2014.igem.org/Team:TU_Delft-Leiden/Project/Life_science/EET/integration">here</a> and for the landmine detection module can be read <a href="https://2014.igem.org/Team:TU_Delft-Leiden/Project/Life_science/landmine/integration">here</a>.
-
<!--NAV BAR----------------->
+
</p>
-
     
+
 
-
        <div id="nav">
+
 
-
<ul id="menu">
+
<div class="tableofcontents">
-
        <lil> <top><a href="/Team:TU_Delft-Leiden"><img src="https://static.igem.org/mediawiki/2014/a/a3/Delft2014_Home_Icon.png" height= 22</img></a></top></lil>
+
 
 +
<center> <h3> Contents </h3> </center>
 +
 
 +
<ul>
 +
   
 +
   
 +
       
 +
        <a href="/Team:TU_Delft-Leiden/Modeling/Curli">
 +
        <p>Curli Module</p>
 +
        </a>
 +
              <ul>
 +
                    <li>
 +
 
 +
                    <a href="https://2014.igem.org/Team:TU_Delft-Leiden/Modeling/Curli/Gene">
 +
                    <p>Gene Level Modeling</p>
 +
                    </a>
 +
                       
 +
                    </li>
 +
 
 +
                    <li>
 +
                    <a href="https://2014.igem.org/Team:TU_Delft-Leiden/Modeling/Curli/Cell">
 +
                    <p>Cell Level Modeling</p>
 +
                    </a>
 +
                       
 +
                    </li>
 +
 
 +
                    <li>
 +
                    <a href="https://2014.igem.org/Team:TU_Delft-Leiden/Modeling/Curli/Colony">
 +
                    <p>Colony Level Modeling</p>
 +
                    </a>
 +
                     
 +
                              <li>
 +
                              <a href="https://2014.igem.org/Team:TU_Delft-Leiden/Modeling/Curli/Reflection">
 +
                              <p>Critical reflection on our model</p>
 +
                              </a>
 +
                              </li>
 +
 
 +
                    </li>
 +
              </ul>
 +
 
 +
 
 +
 
 +
          <a href="https://2014.igem.org/Team:TU_Delft-Leiden/Modeling/EET">
 +
          <p>EET Module</p>
 +
          </a>
 +
 +
          <ul>
 +
 
 +
              <li>
 +
                 
 +
                    <a href="https://2014.igem.org/Team:TU_Delft-Leiden/Modeling/EET/FBA">
 +
                    <p> Flux Balance Analysis of the EET Module</p>
 +
                    </a>
 +
 
 +
                 
 +
              </li>
 +
 
 +
              <li>
 +
 
 +
                    <a href="https://2014.igem.org/Team:TU_Delft-Leiden/Modeling/EET/Deterministic">
 +
                    <p> Deterministic Model of EET Complex Assembly</p>
 +
                    </a>
 +
 
 +
                    <ul>
 +
                     
 +
                    </ul>
 +
   
 +
              </li>
 +
 
 +
        </ul>
 +
 
 +
          <a href="https://2014.igem.org/Team:TU_Delft-Leiden/Modeling/Landmine">
 +
          <p>Landmine Module</p>
 +
          </a>
            
            
-
           <li><top><a href="/Team:TU_Delft-Leiden/Team">Team</a></top></li>
+
           <ul>
-
                         
+
 
-
          <li><top><a href="/Team:TU_Delft-Leiden/Project">Project</a></top>
+
              <li>  
-
            <ul class="active"><li><a href="/Team:TU_Delft-Leiden/Project">Overview</a> </li>
+
                    <a href="https://2014.igem.org/Team:TU_Delft-Leiden/Modeling/Landmine#simplemodel">
-
            <li><a href="/Team:TU_Delft-Leiden/Notebook">Notebook</a></li>
+
                    <p>Simple Binding Model </p>
-
            <li><a href="/Team:TU_Delft-Leiden/Gadget">Gadget</a></li>
+
                    </a>
-
            </ul></li>
+
              </li>
-
       
+
              <li>
-
          <li><top><a href="/Team:TU_Delft-Leiden/Achievements">Achievements</a></top></li>
+
                    <a href="https://2014.igem.org/Team:TU_Delft-Leiden/Modeling/Landmine#coopbinding">
 +
                    <p>Cooperative Binding Model</p>
 +
                    </a>
 +
              </li>
 +
    <li>
 +
                    <a href="https://2014.igem.org/Team:TU_Delft-Leiden/Modeling/Landmine#experimentaldata">
 +
                    <p>Fitting to Experimental Data</p>
 +
                    </a>
 +
              </li>
 +
 
 +
          </ul>
 +
 
            
            
-
           <li><top><a href="/Team:TU_Delft-Leiden/Modeling">Modeling</a></top></li>
+
           <a href="https://2014.igem.org/Team:TU_Delft-Leiden/Modeling/interactions">
 +
          <p>Interaction with Life Science and Microfluidics</p>
 +
          </a>
 +
         
 +
          <ul>
-
          <li><top><a href="/Team:TU_Delft-Leiden/Safety">Safety</a></top></li>
+
              <li>  
-
       
+
                    <a href="https://2014.igem.org/Team:TU_Delft-Leiden/Project/Life_science/curli/integration">
-
           <li> <top><a href="/Team:TU_Delft-Leiden/Human Practices">Human Practice</a></top></li>   
+
                    <p>Curli Module </p>
 +
                    </a>
 +
              </li>
 +
              <li>
 +
                    <a href="https://2014.igem.org/Team:TU_Delft-Leiden/Project/Life_science/EET/integration">
 +
                    <p>EET Module </p>
 +
                    </a>
 +
              </li>
 +
                <li>
 +
                    <a href="https://2014.igem.org/Team:TU_Delft-Leiden/Project/Life_science/landmine/integration">
 +
                    <p>Landmine Module </p>
 +
                    </a>
 +
              </li>
 +
             
 +
           </ul>
 +
 +
 
 +
          <a href="/Team:TU_Delft-Leiden/Modeling/Techniques">
 +
          <p>Modeling Methods</p>
 +
          </a>
 +
   
 +
          <ul>
 +
             
 +
              <li>
 +
                    <a href="/Team:TU_Delft-Leiden/Modeling/Techniques#DeterministicTheory">
 +
                    <p>Deterministic Modeling Methods</p>
 +
                    </a>
 +
              </li>
 +
              <li>
 +
                    <a href="/Team:TU_Delft-Leiden/Modeling/Techniques#FBATheory">
 +
                    <p>Flux Balance Analysis Method</p>
 +
                    </a>  
 +
              </li>
 +
              <li>
 +
                    <a href="/Team:TU_Delft-Leiden/Modeling/Techniques#PercolationTheory">
 +
                    <p>Percolation Theory</p>
 +
                    </a>
 +
              </li>
 +
              <li>
 +
                    <a href="/Team:TU_Delft-Leiden/Modeling/Techniques#GraphTheory">
 +
                    <p>Graph Theory</p>
 +
                    </a>
 +
              </li>
 +
 
 +
          </ul>   
 +
   
 +
   
            
            
-
        <li><top><a href="/Team:TU_Delft-Leiden/Collaborators">Collaborators</a></top>
+
          <a href="/Team:TU_Delft-Leiden/Modeling/CodeRepository">
-
            <ul><li><a href="/Team:TU_Delft-Leiden/Sponsors">Sponsors</a></li>
+
          <p>Code Repository</p>
-
            <li><a href="/Team:TU_Delft-Leiden/Media">Media</a></li>
+
          </a>
-
            <li><a href="/Team:TU_Delft-Leiden/iGEM teams">iGEM teams</a></li>
+
-
            </ul></li>  
+
            
            
-
          <end></end>
 
-
        </ul>
 
-
      </div>
 
-
             
 
-
<!--PAGE CONTENT----------------->
 
-
  <a href="/Team:TU_Delft-Leiden/Modeling/Techniques"><img src="/wiki/images/c/c6/Delft2014_Modelling_button.png" height= 162 width= 162 alt="image not found"style= "position:relative; left:102px; margin-top: 30px;" >
+
</ul>   
-
        </a>
+
 +
</div>
-
<!--BOTTOM SECTION----------------->
+
<h3> References </h3>
-
     
+
-
<div id= "bottom-section">
+
-
    <p> iGEM office
+
-
Room 0.620 Biotechnology building TU Delft<br>
+
-
Julianalaan 67<br>
+
-
2628 BC Delft<br>
+
-
The Netherlands<br>
+
-
+3115 2783394<br>
+
-
tudelft.igem@gmail.com<br><br>
+
-
      Copyright iGEM TU Delft-Leiden 2014    </p>
+
-
   
+
-
</div>
+
-
     
+
-
    </div>
+
-
<!--SIDE BARS----------------->  
+
<p>
-
 
+
[1] S. Yagur-Kroll, S. Belkin <i>et al.</i>, “<i>Escherichia Coli</i> bioreporters for the detection of 2,4-dinitrotoluene and 2,4,6-trinitrotoluene”, Appl. Microbiol. Biotechnol. 98, 885-895, 2014.  
-
    <div id= modal>
+
</p>
-
        <a href="https://igem.org/Main_Page" target="_blank"><img src="https://static.igem.org/mediawiki/2014/9/9d/Delft2014_Sidelogoigem.png" height = "50" width = "50></>
+
-
        <a href="http://www.facebook.com/pages/TUDelft-IGEM-2014/627491607266909?sk=info" target="_blank"><img src="https://static.igem.org/mediawiki/2014/3/34/Delft2014_Sidelogofb.png" height = "50" width = "50" vspace = "5"></a>
+
-
        <a href="http://twitter.com/iGEMTUDelftLeid" target="_blank"><img src="https://static.igem.org/mediawiki/2014/7/79/Delft2014_Sidelogotwitter.png" height = "50" width = "50"> </a>
+
-
    </div>
+
-
    <div class="modalright"> <a href="/Team:TU_Delft-Leiden/Support us">
+
 
-
        <img src="https://static.igem.org/mediawiki/2014/b/b9/Delft2014_Support_Us_sidelogo.png" height = "160" width = "50" alt="image not found"></a>
+
</div>
-
          </div>
+
</body>
</html>
</html>
 +
 +
{{:Team:TU_Delft-Leiden/Templates/End}}

Latest revision as of 23:44, 17 October 2014


Modeling Overview

We developed models for each of the three different modules of our project: the conductive curli module, the extracellular electron transport (EET) module and the landmine detection module.
For the conductive curli module, we wanted to know if a conductive path between two electrodes of a chip filled with curli growing E. coli arise at a certain point in time. We also wanted to make quantitative predictions about the resistance between the two electrodes of our system in time.
For the EET module, our goal was to investigate the carbon metabolism providing the electrons for the EET module. Also, we want the EET pathway used by the cells in order to have a measurable electrical signal for our biosensor, see the gadget section of our wiki. Furthermore, in our modeling of the assembly of the EET complex, we wanted to predict how many EET complexes are formed under different initial conditions. We focused, in addition to the assembly mechanism, also on the apparent reduced cell viability.
For the landmine module, we tried to find a model which would be able to reproduce the response curves of both the landmine promoters, as found in [1].
For the EET and landmine modules, we used deterministic modeling. For the curli module, we used a stochastic modeling approach, and considered the system at the gene, cell and colony level. At the colony levvel, we employed percolation theory in order to predict if a conductive path between the two electrodes arise at a certain point in time and to predict at which time this happens. Our application of percolation theory to describe the formation of a conductive biological network represents a novel approach that has not been used in the literature before.


We used Matlab for most of the calculations; the scripts we made can be found in the Code Repository. We had great interactions with the Life Science and Microfluidics departments, which for the conductive curli module can be read here, for the EET module can be read here and for the landmine detection module can be read here.

References

[1] S. Yagur-Kroll, S. Belkin et al., “Escherichia Coli bioreporters for the detection of 2,4-dinitrotoluene and 2,4,6-trinitrotoluene”, Appl. Microbiol. Biotechnol. 98, 885-895, 2014.

Top
facebook twitter