Team:ULB-Brussels/Modelling/Population-Dynamics

From 2014.igem.org

(Difference between revisions)
Line 1: Line 1:
{{Http://2014.igem.org/Team:ULB-Brussels/Template}}
{{Http://2014.igem.org/Team:ULB-Brussels/Template}}
 +
 +
mv to
 +
Intro page: [https://2014.igem.org/Team:ULB-Brussels/Modelling]
 +
Next page: [https://2014.igem.org/Team:ULB-Brussels/Modelling/TA-System]
 +
Concl page: [https://2014.igem.org/Team:ULB-Brussels/Modelling/Conclusion]
 +
<html>
<html>
<head>
<head>
Line 6: Line 12:
     Université Libre de Bruxelles  **/                -->
     Université Libre de Bruxelles  **/                -->
 +
<!-- text -->
<table style="background-color:#ebebeb;" width="90%"  align="center">
<table style="background-color:#ebebeb;" width="90%"  align="center">
-
<tr style="background-color:rgb(245,245,245);"><td colspan="2">
+
<tr style="background-color:rgb(245,245,245);"><td>
-
<br/><section><b><a href="https://2014.igem.org/Team:ULB-Brussels/Modelling">Overview</a> | Dynamics | <a href="https://2014.igem.org/Team:ULB-Brussels/Modelling/TA-System">TA System</a> | <a href="https://2014.igem.org/Team:ULB-Brussels/Modelling/2A-Peptid">2A Peptide</a> | <a href="https://2014.igem.org/Team:ULB-Brussels/Modelling/Conclusion">Conclusion</a></b>
+
<section style="text-align: justify; margin: 50px">
-
</section>
+
-
 
+
-
<!-- text -->
+
-
<table style="background-color:#CCD6EA; box-shadow: 1px 1px 10px #555; " width="90%"  align="center">
+
-
<tr style="background-color:#CCD6EA; "><td colspan="2">
+
-
<p class="title"><font color="#002B9B">
+
-
Dynamics
+
-
</font></p>
+
-
</td></tr>
+
-
</table>
+
-
</br>
+
<h1>Population Dynamics Model</h1>
<h1>Population Dynamics Model</h1>
Line 37: Line 33:
The Logistic Equation was initially introduced during the beginning of the XIXth Century, by the belgian mathematician P.F. Verhulst. Now, this equation is mainly used in Population Dynamics Models, especially in Biological Sciences.</p>
The Logistic Equation was initially introduced during the beginning of the XIXth Century, by the belgian mathematician P.F. Verhulst. Now, this equation is mainly used in Population Dynamics Models, especially in Biological Sciences.</p>
</section>
</section>
-
</td>
+
 
-
</tr>
+
<tr><td><br/><br/></td></tr>
-
<tr style="background-color:rgb(245,245,245);"><td width="50%"><section style="text-align: left"><a href="https://2014.igem.org/Team:ULB-Brussels/Modelling"><b> < Overview </b></a><br/><br/><br/></section> </td><td><section style="text-align: right">
+
</table></th></tr>
-
<a href="https://2014.igem.org/Team:ULB-Brussels/Modelling/TA-System"><b> TA System > </b></a>
+
 
-
<br/><br/><br/></section></td></tr>
+
</div>
Line 47: Line 43:
<script type="text/javascript"src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/javascript"src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
-->
-->
 +
 +
<!-- Previous and Next pages -->
 +
<tr style="background-color:rgb(245,245,245);"><td width="50%"><section style="text-align: left"><a href="https://2014.igem.org/Team:ULB-Brussels/Modelling"><b> < Overview </b></a><br/><br/><br/></section> </td><td><section style="text-align: right">
 +
<a href="https://2014.igem.org/Team:ULB-Brussels/Modelling/TA-System"><b> TA System > </b></a>
 +
<br/><br/><br/></section></td></tr>

Revision as of 11:20, 1 September 2014

$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ \newcommand{\MyColi}{{\small Mighty\hspace{0.12cm}Coli}} \newcommand{\Stabi}{\small Stabi}$ $\newcommand{\EColi}{\small E.coli} \newcommand{\SCere}{\small S.cerevisae}\\[0cm] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ \newcommand{\PI}{\small PI}$ $\newcommand{\Igo}{\Large\mathcal{I}} \newcommand{\Tgo}{\Large\mathcal{T}} \newcommand{\Ogo}{\Large\mathcal{O}} ~$ Example of a hierarchical menu in CSS

carousel slider





- Université Libre de Bruxelles -


mv to Intro page: [1] Next page: [2] Concl page: [3]

Population Dynamics Model

A Population Dynamics Model can be fitted in our system. Theoretically, two approaches have been planned:

$1.1)$ $By$ $Probabilities$

When some new plasmids are genetically introduced into the cytoplasm of E.Coli bacteria, this doesn't garantee that the future copies will contain it. Indeed, these plasmids can be lost after cell division or replication, so it's interesting to study a model based on the different possibilities of plasmid combinations in bacteria, like in the studies of mutations in animals. A typical example of a similar way is found if we study the mutations of the eyes color in a family, by vertical genes transfer. In this case, there's a horizontal genes transfer too, originated by the plasmids.

A Probabilistic Model is util because easily undertsood, but necessits some assumptions.

$1.2)$ $By$ $Logistic$ $Equation$

The Logistic Equation was initially introduced during the beginning of the XIXth Century, by the belgian mathematician P.F. Verhulst. Now, this equation is mainly used in Population Dynamics Models, especially in Biological Sciences.



< Overview


TA System >