Team:Cambridge-JIC

From 2014.igem.org

(Difference between revisions)
(Undo revision 86757 by Tnghiem (talk))
Line 24: Line 24:
         <div class="container">
         <div class="container">
             <div class="col-lg-10 col-sm-pull-0  col-sm-6">
             <div class="col-lg-10 col-sm-pull-0  col-sm-6">
-
                 <html>
+
                 <h2 class="section-heading">PhytoSpy: A modular plant biosensor</h2>
-
<h1> Chromoprotein Constructs</h1>
+
            </div>
-
 
+
            <div class="row">
-
<h2> Design </h2>
+
                <div class="col-lg-3 col-sm-pull-0  col-sm-6">
-
<div id="Aim" align="left">
+
                    <img src="https://static.igem.org/mediawiki/2014/3/34/Cambridge_JIC_Mpoly_Round.png" height="250 px">
-
<h4> Aim of the construct </h4>
+
                    <hr class="section-heading-spacer">
-
<ul>
+
                    <div class="clearfix"></div>
-
Chromoproteins represent ideal reporter genes. Unlike fluorescent protein, from which chromoproteins were originally derived, they require no specialised optical equipment for detection. Our aim is to use a selection of such proteins, donated by the iGEM 2012 Uppsala team, as our most basic and main output in regards to the Marchantia framework.
+
                        <dt>Aim</dt>
-
<br></br>
+
                        <p> Build a modular biosensor using, for the first time in iGEM, the lower plant chassis Marchantia Polymorpha.<br><br><br><br><br>Click <a href="https://2014.igem.org/Team:Cambridge-JIC/Project">here</a> to read more about our project.</p>
-
We decided to test the following chromoprotein constructs:
+
                </div>
-
<br></br>
+
                <div class="col-lg-3 col-sm-pull-0  col-sm-6">
-
<li> 35s - eforRed - nosT</li>
+
                    <img src="https://static.igem.org/mediawiki/2014/a/ad/Cambridge_JIC_Lab_Round.png" height="250 px">
-
<li> 35s - eforRed - N7 - nosT</li>
+
                    <hr class="section-heading-spacer">
-
<li> 35s - amilCP - N7 - nosT</li>
+
                    <div class="clearfix"></div>
-
<li> 35s - tsPurple - nosT</li>
+
                        <dt>Plan </dt>
-
<li> 35s - tsPurple - N7 - nosT</li>
+
                        <p> Use Marchantia as a flexible biosensor. The input, processing and output functionality are parceled into separate modules which are linked using transcription factors and inducible promoters. The modules can be interchanged, allowing many devices to be constructed from the same library of components.</p>
-
<li> 35s - asPink - N7 - nosT</li>
+
                </div>
-
<li> 35s - aeBlue - N7 - nosT</li>
+
                <div class="col-lg-3 col-sm-pull-0  col-sm-6">
-
<br></br>By expressing the chromoproteins in the pGreen vector with the 35s promoter and the nosT terminaor, we control for the possiblity of the promoter/terminator not functioning in our chassis.
+
                    <img src="https://static.igem.org/mediawiki/2014/0/07/Cambridge_JIC_Archeg_Fingers_Round.png" height="250 px">
-
The N7 fragment allows for the selected constructs to localise chromoprotein to the nucleus. It is believed by Bernardo Pollak that this may end up increasing the likelihood of detecting the chromoproteins with the naked eye.
+
                    <hr class="section-heading-spacer">
-
 
+
                    <div class="clearfix"></div>
-
</ul>
+
                        <dt>Vision </dt>
-
 
+
                        <p> Produce input, processing and output modules in separate plants which can be combined through Mendelian crossing. We want to make plant biosensors accessible to the home enthusiast in the same way that electronics is made accessible by Arduino. </p>
-
</div>
+
-
 
+
-
<div id="The plasmid" align="left">
+
-
<h4> End goal plasmid </h4>
+
-
<ul>
+
-
<li> insert image here </li>
+
-
</ul>
+
-
 
+
-
</div>
+
-
 
+
-
<h2> Experimentation (up to date)</h2>
+
-
 
+
-
 
+
-
 
+
-
<div id="PCR" align="left">
+
-
<h4>PCR</h4>
+
-
Attempt 1:
+
-
<ul>
+
-
<p>Date: 18.07.2014</p>
+
-
<p>UIDs of primers/plasmids used:</p>
+
-
<ul><li>Backbone Fragment 1 (35s - Hyg promoter): B14, P16, P14. Tubes: CpI 1</li>
+
-
<li>Backbone Fragment 2(Hyg promoter - nosT): B14, P15, P17. Tubes: CpI 2</li>
+
-
<li>N7 fragment: B15, P13, P22. Tubes: CpI 3</li>
+
-
<li>eforRed gene(cytoplasmic): B13, P1, P2. Tubes: CpI 4</li>
+
-
<li> eforRed gene(nuclear): B13, P1, P3. Tubes: CpI 5</li>
+
-
<li> amilCP gene(nuclear): B10, P4, P5. Tubes: CpI 6</li>
+
-
<li> tsPurple gene(cytoplasmic): B12, P6, P7. Tubes: CpI 7</li>
+
-
<li> tsPurple gene(nuclear): B12, P6, P8. Tubes: CpI 8</li>
+
-
<li> asPink gene(nuclear): B9, P9, P10. CpI 9</li>
+
-
<li> aeBlue gene(nuclear): B11, P11, P12. Tubes: CpI 10</li></ul>
+
-
<p>After running the gel, the concentrations of CpI 1, CpI 2 and CpI 3 were much lower compared to the chromoprotein genes (see gel picture). Amplification of CpI 3 failed. The problem was an alteration to the primers necessary for amplification. Re-ran PCR for CpI 3. Modification: Appropriate primers (P13 & P22) and the extension phase of PCR has been reduced from 2 min to 15 sec since N7 is only ~300bp long.
+
-
The DNA was then purified using the QIAGEN QiaQuick Gel Purification Kit. The DNA was eluted in 50 ul of EB buffer. Due to the large elution volume and the lower yield of the backbone DNA, the concentrations (measured using Nanodrop) were lower than the suggested 10ng/ul threshold for Gibson.
+
-
</p></ul>
+
-
<p><a href="http://pcrspreadsheet.com">PCR Excell Protocol</a></p>
+
-
<p><a href="http://google.com/GEL_27_07_2014">Gel Picture</a></p>
+
-
</div>
+
-
<br>
+
-
Attempt 2:
+
-
<ul>
+
-
<p>Date: 21.07.2014</p>
+
-
<p>UIDs of primers/plasmids used:</p>
+
-
<ul><li>Backbone Fragment 1 (35s - Hyg promoter): B14, P16, P14. Tubes: CpII 1</li>
+
-
<li>Backbone Fragment 2(Hyg promoter - nosT): B14, P15, P17. Tubes: CpII 2</li>
+
-
<li>N7 fragment: B15, P13, P22. Tubes: CpII 3</li>
+
-
<li>eforRed gene(cytoplasmic): B13, P1, P2. Tubes: CpII 4</li>
+
-
<li> eforRed gene(nuclear): B13, P1, P3. Tubes: CpII 5</li>
+
-
<li> amilCP gene(nuclear): B10, P4, P5. Tubes: CpII 6</li>
+
-
<li> tsPurple gene(cytoplasmic): B12, P6, P7. Tubes: CpII 7</li>
+
-
<li> tsPurple gene(nuclear): B12, P6, P8. Tubes: CpII 8</li>
+
-
<li> asPink gene(nuclear): B9, P9, P10. CpII 9</li>
+
-
<li> aeBlue gene(nuclear): B11, P11, P12. Tubes: CpII 10</li></ul>
+
-
<p>Due to the low yield of the DNA purification fro Attempt 1, the entire PCR was repeated. Upon gel separation we realised the PCRs were nearly identical (see Gel Picture), which is what we were expecting. However, the DNA was euted into 10ul of EB buffer instead of 50ul during the gel purification step, which increased the concentrations of CpII 4-10 significantly. However, CpII 1-3 concentrations were still below the 10 ng DNA/ul range. </p></ul>
+
-
<p><a href="http://pcrspreadsheet.com">PCR Excell Protocol</a></p>
+
-
<p><a href="http://google.com/GEL_27_07_2014">Gel Picture</a></p>
+
-
</div>
+
-
 
+
-
Attempt 3:
+
-
<ul>
+
-
<p>Date: 22.07.2014</p>
+
-
<p>UIDs of primers/plasmids used:</p>
+
-
<ul><li>Backbone Fragment 1 (35s - Hyg promoter): B14, P16, P14. Tubes: CpIII 1</li>
+
-
<li>Backbone Fragment 2 - Full Size(Hyg promoter - nosT): B14, P15, P17. Tubes: CpIII 2 RBLB</li>
+
-
<li>Backbone Fragment 2 - LB(Hyg promoter - KanR): B14, P18, P17. Tubes: CpIII 2 LB</li>
+
-
<li>Backbone Fragment 2 - RB(KanR - nosT): B14, P15, P19. Tubes: CpIII 2 RB</li>
+
-
<li>N7 fragment: B15, P13, P22. Tubes: CpIII 3</li>
+
-
<p>The backbone fragments were re-aplified to allow for future assemblies to be made. The PCR was altered to run for 35 amplification cycles instead of 30, which increase the yield of DNA. </p></ul>
+
-
<p><a href="http://pcrspreadsheet.com">PCR Excell Protocol</a></p>
+
-
<p><a href="http://google.com/GEL_27_07_2014">Gel Picture</a></p>
+
-
</div>
+
-
 
+
-
<div id="Gibson" align="left">
+
-
<h4> Gibson </h4>
+
-
Attempt 1:
+
-
<ul>
+
-
<li>Date: 21.07.2014</li>
+
-
<li>End date/time:</li>
+
-
<li>Comments:</li>
+
-
</ul>
+
-
</div>
+
-
 
+
-
<div id="E-Coli transformation" align="left">
+
-
<h4>E-Coli transformation </h4>
+
-
Attempt 1:
+
-
<ul>
+
-
<li>Start date/time:</li>
+
-
<li>End date/time:</li>
+
-
<li>Comments:</li>
+
-
</ul>
+
-
</div>
+
-
 
+
-
<div id="Agrobacteria transformation" align="left">
+
-
<h4>Agrobacteria transformation</h4>
+
-
Attempt 1:
+
-
<ul>
+
-
<li>Start date/time:</li>
+
-
<li>End date/time:</li>
+
-
<li>Induce comments:</li>
+
-
<li>Growth comments:</li>
+
-
<li>Electroporation/selection comments:</li>
+
-
</ul>
+
-
</div>
+
-
 
+
-
 
+
-
<div id="Spore preparation" align="left">
+
-
 
+
-
<h4>Spore preparation</h4>
+
-
 
+
-
Attempt 1:
+
-
<ul>
+
-
<li>Start date/time:</li>
+
-
<li>End date/time:</li>
+
-
<li>Comments:</li>
+
-
</ul>
+
-
</div>
+
-
 
+
-
<div id="Spore transformation" align="left">
+
-
 
+
-
<h4> Spore transformation</h4>
+
-
 
+
-
Attempt 1:
+
-
<ul>
+
-
<li>Start date/time:</li>
+
-
<li>End date/time:</li>
+
-
<li>Comments:</li>
+
-
</ul>
+
-
</div>
+
-
 
+
-
<div id="Evaluation" align="left">
+
-
 
+
-
<h2> Evaluation</h2>
+
-
 
+
-
<ul>
+
-
<li>Start date/time:</li>
+
-
<li>End date/time:</li>
+
-
<li>Comments:</li>
+
-
</ul>
+
-
</div>
+
-
</html>
+
-
 
+
                 </div>
                 </div>
             </div>
             </div>

Revision as of 15:14, 25 August 2014

Cambridge iGEM 2014


Cambridge JIC

Welcome to the page for the Cambridge University team,
affiliated with the John Innes Centre in Norwich.

PhytoSpy: A modular plant biosensor


Aim

Build a modular biosensor using, for the first time in iGEM, the lower plant chassis Marchantia Polymorpha.




Click here to read more about our project.


Plan

Use Marchantia as a flexible biosensor. The input, processing and output functionality are parceled into separate modules which are linked using transcription factors and inducible promoters. The modules can be interchanged, allowing many devices to be constructed from the same library of components.


Vision

Produce input, processing and output modules in separate plants which can be combined through Mendelian crossing. We want to make plant biosensors accessible to the home enthusiast in the same way that electronics is made accessible by Arduino.


Our team

We are a multidisciplinary group of 9 enthusiastic Cambridge science undergraduates. Click here to meet the team.

Edit this page