Team:Tsinghua-A

From 2014.igem.org

(Difference between revisions)
(Prototype team page)
Line 1: Line 1:
-
{{CSS/Main}}
+
<h1>Background</h1>
 +
<p>Transactivator-Like Effectors (TALEs) are a technology that once revolutionized the way researchers manipulate DNA with exceptional site specificity. TALEs are proteins secreted by Xanthomonas bacteria and they recognize DNA sequences through a central repeat domain consisting of a variable number of 34 amino acid repeats. There appears to be a one-to-one correspondence between the identity of two critical amino acids in each repeat and each DNA base in the target sequence.</p>
-
<html>
+
<h1>Assembly</h1>
-
<!--main content -->
+
<p>The TALE assembly strategy uses the Golden Gate cloning method, which is based on the ability of type IIS enzymes to cleave outside of their recognition site. When type IIS recognition sites are placed to the far 5’ and 3’ end of any DNA fragment in inverse orientation, they are removed in the cleavage process, allowing two DNA fragments flanked by compatible sequence overhangs, termed fusion sites, to be ligated seamlessly. Since type IIS fusion sites can be designed to have different sequences, directional assembly of multiple DNA fragments is feasible. Using this strategy, DNA fragments can be assembled from undigested input plasmids in a one-pot reaction with high efficiency.
-
<table width="70%" align="center">
+
We chose the native TALE AvrBs3 as a scaffold for customized assembly of TALE constructs. The central DNA binding domain of AvrBs3 is formed by 17.5 tandemly arranged 34 amino acid repeats, with the last half repeat showing similarity to only the first 20 amino acids of a full repeat. To reduce the risk of recombination events between the 17.5 highly homologous repeat sequences, we codon-optimized avrBs3 applying the codon usage.
 +
In a single Golden Gate cloning reaction, cloning efficiency is significantly reduced for assembly of 17 repeat modules. Therefore, we split the assembly in two successive steps. In the first cloning step, 10 repeats are assembled in one vector. The preassembly vectors confer SpecR and encode a lacZ-α fragment for blue/white selection. On both sides of the lacZ-α fragment a type IIS recognition sequence - BsaI - is positioned. Similarly, 11~17 repeats and NG-last-repeat are respectively ligated and inserted into another vector. After preassembly of the 10 and 7 and last repeats using BsaI, the intermediate blocks are released via Esp3I and cloned into the final assembly vector (modified pTAL1). Modified pTAL1 confers AmpR, and allows plasmid replication in E.coli. The vector pTAL1 also contains all elements of the final TALE expression construct, except the repeat modules.</p>
 +
<h1>Modeling</h1>
-
<!--welcome box -->
+
<p>In modeling part, genetic algorithm is applied to TALE sequence optimization. We exploit amino acid degeneracy and alternate the nucleotides to reduce the repetition rate of DNA bases of the DNA sequence of TALE. Then the optimized TALE will be tested by biological experiments. We divide our algorithm into four parts. First, we alternate a random point of natural DNA sequence of TALE. It is the same as gene mutation. Thousands of mutational sequences form a population and we simulate the process of reproduction in computer. The population will be changed by exchange of parts of DNA. Then each sequence will be estimated by dynamic programming and given a score. The high scored sequences have higher possibility to survive and the lower ones are more likely to be obsoleted. After more than 200 generations, an optimized population will be created. And we choose a certain number of the sequences to be tested in the next biological test.</p>
-
<tr>
+
-
<td style="border:1px solid black;" colspan="3" align="center" height="150px" bgColor=#FF404B>
+
-
<h1 >WELCOME TO iGEM 2014! </h1>
+
-
<p>Your team has been approved and you are ready to start the iGEM season!
+
-
<br>On this page you can document your project, introduce your team members, document your progress <br> and share your iGEM experience with the rest of the world! </p>
+
-
<br>
+
-
<p style="color:#E7E7E7"> <a href="https://2014.igem.org/wiki/index.php?title=Team:Tsinghua-A&action=edit"style="color:#FFFFFF"> Click here  to edit this page!</a> </p>
+
-
</td>
+
-
</tr>
+
-
<tr> <td colspan="3"  height="5px"> </td></tr>
+
<h1>Report System</h1>
-
<!-- end welcome box -->
+
-
<tr>  
+
-
<!--navigation menu -->
+
<p>We construct a report system so as to test the reliability and efficiency of our ‘Telling TALE’. In this section, we test the TALE’s DNA binding ability and report it with a common report gene ‘RFP’. We attempt to put the target of TALE’s DNA binding target sequence inside the expression cassette of report gene and binding TALE can disrupt the express of report gene. We use iGEM standard parts to build our report system.</p>
-
<td align="center" colspan="3">
+
-
<table  width="100%">
+
<h1>Reference</h1>
-
<tr heigth="15px"></tr>
+
-
<tr heigth="75px">  
+
-
 
+
<p>Weber E, Gruetzner R, Werner S, Engler C, Marillonnet S (2011) Assembly of Designer TAL Effectors by Golden Gate Cloning. PLoS ONE 6(5): e19722. doi:10.1371/journal.pone.0019722</p>
-
<td style="border:1px solid black;" align="center" height ="45px" onMouseOver="this.bgColor='#d3d3d3'" onMouseOut="this.bgColor='#e7e7e7'" bgColor=#e7e7e7> 
+
-
<a href="https://2014.igem.org/Team:Tsinghua-A"style="color:#000000">Home </a> </td>
+
-
 
+
-
<td style="border:1px solid black;" align="center" height ="45px" onMouseOver="this.bgColor='#d3d3d3'" onMouseOut="this.bgColor='#e7e7e7'" bgColor=#e7e7e7>
+
-
<a href="https://2014.igem.org/Team:Tsinghua-A/Team"style="color:#000000"> Team </a> </td>
+
-
 
+
-
<td style="border:1px solid black;" align="center"  height ="45px"  onMouseOver="this.bgColor='#d3d3d3'" onMouseOut="this.bgColor='#e7e7e7'" bgColor=#e7e7e7>
+
-
<a href="https://igem.org/Team.cgi?year=2014&team_name=Tsinghua-A"style="color:#000000"> Official Team Profile </a></td>
+
-
 
+
-
<td style="border:1px solid black" align="center"  height ="45px" onMouseOver="this.bgColor='#d3d3d3'" onMouseOut="this.bgColor='#e7e7e7'" bgColor=#e7e7e7> 
+
-
<a href="https://2014.igem.org/Team:Tsinghua-A/Project"style="color:#000000"> Project</a></td>
+
-
 
+
-
<td style="border:1px solid black;" align="center"  height ="45px" onMouseOver="this.bgColor='#d3d3d3'" onMouseOut="this.bgColor='#e7e7e7'" bgColor=#e7e7e7>
+
-
<a href="https://2014.igem.org/Team:Tsinghua-A/Parts"style="color:#000000"> Parts</a></td>
+
-
 
+
-
<td style="border:1px solid black;" align="center" height ="45px" onMouseOver="this.bgColor='#d3d3d3'" onMouseOut="this.bgColor='#e7e7e7'" bgColor=#e7e7e7>
+
-
<a href="https://2014.igem.org/Team:Tsinghua-A/Modeling"style="color:#000000"> Modeling</a></td>
+
-
 
+
-
<td style="border:1px solid black;" align="center" height ="45px" onMouseOver="this.bgColor='#d3d3d3'" onMouseOut="this.bgColor='#e7e7e7'" bgColor=#e7e7e7> 
+
-
<a href="https://2014.igem.org/Team:Tsinghua-A/Notebook"style="color:#000000"> Notebook</a></td>
+
-
 
+
-
<td style="border:1px solid black;" align="center"  height ="45px" onMouseOver="this.bgColor='#d3d3d3'" onMouseOut="this.bgColor='#e7e7e7'" bgColor=#e7e7e7>
+
-
<a href="https://2014.igem.org/Team:Tsinghua-A/Safety"style=" color:#000000"> Safety </a></td>
+
-
 
+
-
<td style="border:1px solid black;" align="center"  height ="45px" onMouseOver="this.bgColor='#d3d3d3'" onMouseOut="this.bgColor='#e7e7e7'" bgColor=#e7e7e7>
+
-
<a href="https://2014.igem.org/Team:Tsinghua-A/Attributions"style="color:#000000"> Attributions </a></td>
+
-
 
+
-
 
+
-
<td align ="center"> <a href="https://2014.igem.org/Main_Page"> <img src="https://static.igem.org/mediawiki/igem.org/6/60/Igemlogo_300px.png" width="55px"></a> </td>
+
-
</tr>
+
-
</table>
+
-
 
+
-
<!--end navigation menu -->
+
-
</tr>
+
-
 
+
-
 
+
-
</tr>
+
-
+
-
 
+
-
 
+
-
 
+
-
 
+
-
</td>
+
-
 
+
-
<tr> <td colspan="3"  height="15px"> </td></tr>
+
-
<tr><td bgColor="#e7e7e7" colspan="3" height="1px"> </tr>
+
-
<tr> <td colspan="3"  height="5px"> </td></tr>
+
-
 
+
-
 
+
-
<!--requirements section -->
+
-
<tr><td colspan="3"> <h3> Requirements </h3></td></tr>
+
-
<tr>
+
-
<td width="45%"  valign="top">
+
-
 
+
-
<p> Please be sure to keep these links, your audience will want to find your: </p>
+
-
 
+
-
<!-- Links to other team pages -->
+
-
<ul>
+
-
<li><a href="https://2014.igem.org/Team:Tsinghua-A">Home</a> </li>
+
-
<li><a href="https://2014.igem.org/Team:Tsinghua-A/Team">Team</a> </li>
+
-
<li><a href="https://igem.org/Team.cgi?year=2013&team_name=Tsinghua-A">Official Team Profile</a> </li>
+
-
<li><a href="https://2014.igem.org/Team:Tsinghua-A/Project">Project</a> </li>
+
-
<li><a href="https://2014.igem.org/Team:Tsinghua-A/Parts">Parts</a> </li>
+
-
<li><a href="https://2014.igem.org/Team:Tsinghua-A/Modeling">Modeling</a> </li>
+
-
<li><a href="https://2014.igem.org/Team:Tsinghua-A/Notebook">Notebook</a> </li>
+
-
<li><a href="https://2014.igem.org/Team:Tsinghua-A/Safety">Safety</a> </li>
+
-
<li><a href="https://2014.igem.org/Team:Tsinghua-A/Attributions">Attributions</a> </li>
+
-
 
+
-
</ul>
+
-
 
+
-
</td>
+
-
 
+
-
<td > </td>
+
-
<td width="45%">
+
-
 
+
-
<p>There are a few wiki requirements teams must follow:</p>
+
-
<ul>
+
-
<li>All pages, images and files must be hosted on the <a href ="https://2014.igem.org/Special:Upload">  2014.igem.org server</a>. </li>
+
-
<li>All pages must be created under the team’s name space.</li>
+
-
<li>As part of your documentation, keep the links from the menu to the left. </li>
+
-
<li>Do not use flash in wiki code. </li>
+
-
<li>The <a href="https://static.igem.org/mediawiki/igem.org/6/60/Igemlogo_300px.png"> iGEM logo </a> should be placed on the upper part of every page and should link to <a href="https://2014.igem.org/Main_Page">2014.igem.org</a>.</li>
+
-
</ul>
+
-
<p>Visit the <a href="https://2014.igem.org/Wiki_How-To"> Wiki How To page </a> for a complete list of requirements, tips and other useful information. </p>
+
-
 
+
-
</td>
+
-
</tr>
+
-
 
+
-
 
+
-
<tr> <td colspan="3"  height="15px"> </td></tr>
+
-
<tr><td bgColor="#e7e7e7" colspan="3" height="1"> </tr>
+
-
 
+
-
 
+
-
<!--tips  -->
+
-
<tr><td colspan="3" > <h3> Tips  </h3></td></tr>
+
-
 
+
-
<tr>
+
-
<td width="45%" valign="top">
+
-
<p>We are currently working on providing teams with some easy to use design templates.
+
-
<br> In the meantime you can also view other team wikis for inspiration! Here are some very good examples</p>
+
-
 
+
-
<ul>
+
-
<li> <a href="https://2013.igem.org/Team:SDU-Denmark/"> 2013 SDU Denmark </a> </li>
+
-
<li> <a href="https://2013.igem.org/Team:SYSU-China">2013 SYSU China</a> </li>
+
-
<li> <a href="https://2013.igem.org/Team:Shenzhen_BGIC_ATCG"> 2013 Shenxhen BGIG ATCG </a></li>
+
-
<li> <a href="https://2013.igem.org/Team:Colombia_Uniandes">2013 Colombia Unianades </a></li>
+
-
<li> <a href="https://2013.igem.org/Team:Lethbridge">2013 Lethbridge</a></li>
+
-
</ul>
+
-
 
+
-
<p>For a full wiki list, you can visit <a href="https://igem.org/Team_Wikis?year=2013">iGEM 2013 web sites </a> and <a href="https://igem.org/Team_Wikis?year=2012">iGEM 2012 web sites</a>  lists. </p>
+
-
</td>
+
-
 
+
-
<td> </td>
+
-
<td width="45%">
+
-
 
+
-
<p>This wiki will be your team’s first interaction with the rest of the world, so here are a few tips to help you get started: </p>
+
-
 
+
-
<ul>
+
-
<li>State your accomplishments! Tell people what you have achieved from the start. </li>
+
-
<li>Be clear about what you are doing and what you plan to do.</li>
+
-
<li>You have a global audience! Consider the different backgrounds that your users come from.</li>
+
-
<li>Make sure information is easy to find; nothing should be more than 3 clicks away.  </li>
+
-
<li>Avoid using very small fonts and low contrast colors; information should be easy to read.  </li>
+
-
<li>Start documenting your project as early as possible; don’t leave anything to the last minute before the Wiki Freeze. For a complete list of deadlines visit the <a href="">iGEM 2013 calendar</a> </li>
+
-
<li>Have lots of fun! </li>
+
-
</ul>
+
-
</br>
+
-
</td>
+
-
</tr>
+
-
</table>
+

Revision as of 02:16, 15 August 2014

Contents

Background

Transactivator-Like Effectors (TALEs) are a technology that once revolutionized the way researchers manipulate DNA with exceptional site specificity. TALEs are proteins secreted by Xanthomonas bacteria and they recognize DNA sequences through a central repeat domain consisting of a variable number of 34 amino acid repeats. There appears to be a one-to-one correspondence between the identity of two critical amino acids in each repeat and each DNA base in the target sequence.

Assembly

The TALE assembly strategy uses the Golden Gate cloning method, which is based on the ability of type IIS enzymes to cleave outside of their recognition site. When type IIS recognition sites are placed to the far 5’ and 3’ end of any DNA fragment in inverse orientation, they are removed in the cleavage process, allowing two DNA fragments flanked by compatible sequence overhangs, termed fusion sites, to be ligated seamlessly. Since type IIS fusion sites can be designed to have different sequences, directional assembly of multiple DNA fragments is feasible. Using this strategy, DNA fragments can be assembled from undigested input plasmids in a one-pot reaction with high efficiency. We chose the native TALE AvrBs3 as a scaffold for customized assembly of TALE constructs. The central DNA binding domain of AvrBs3 is formed by 17.5 tandemly arranged 34 amino acid repeats, with the last half repeat showing similarity to only the first 20 amino acids of a full repeat. To reduce the risk of recombination events between the 17.5 highly homologous repeat sequences, we codon-optimized avrBs3 applying the codon usage. In a single Golden Gate cloning reaction, cloning efficiency is significantly reduced for assembly of 17 repeat modules. Therefore, we split the assembly in two successive steps. In the first cloning step, 10 repeats are assembled in one vector. The preassembly vectors confer SpecR and encode a lacZ-α fragment for blue/white selection. On both sides of the lacZ-α fragment a type IIS recognition sequence - BsaI - is positioned. Similarly, 11~17 repeats and NG-last-repeat are respectively ligated and inserted into another vector. After preassembly of the 10 and 7 and last repeats using BsaI, the intermediate blocks are released via Esp3I and cloned into the final assembly vector (modified pTAL1). Modified pTAL1 confers AmpR, and allows plasmid replication in E.coli. The vector pTAL1 also contains all elements of the final TALE expression construct, except the repeat modules.

Modeling

In modeling part, genetic algorithm is applied to TALE sequence optimization. We exploit amino acid degeneracy and alternate the nucleotides to reduce the repetition rate of DNA bases of the DNA sequence of TALE. Then the optimized TALE will be tested by biological experiments. We divide our algorithm into four parts. First, we alternate a random point of natural DNA sequence of TALE. It is the same as gene mutation. Thousands of mutational sequences form a population and we simulate the process of reproduction in computer. The population will be changed by exchange of parts of DNA. Then each sequence will be estimated by dynamic programming and given a score. The high scored sequences have higher possibility to survive and the lower ones are more likely to be obsoleted. After more than 200 generations, an optimized population will be created. And we choose a certain number of the sequences to be tested in the next biological test.

Report System

We construct a report system so as to test the reliability and efficiency of our ‘Telling TALE’. In this section, we test the TALE’s DNA binding ability and report it with a common report gene ‘RFP’. We attempt to put the target of TALE’s DNA binding target sequence inside the expression cassette of report gene and binding TALE can disrupt the express of report gene. We use iGEM standard parts to build our report system.

Reference

Weber E, Gruetzner R, Werner S, Engler C, Marillonnet S (2011) Assembly of Designer TAL Effectors by Golden Gate Cloning. PLoS ONE 6(5): e19722. doi:10.1371/journal.pone.0019722