Team:UNIK Copenhagen/test

From 2014.igem.org

(Difference between revisions)
 
(3 intermediate revisions not shown)
Line 22: Line 22:
padding: 25px;
padding: 25px;
background-color: white;
background-color: white;
-
}
 
-
 
-
.left{
 
-
float: left;
 
-
height: auto;
 
-
max-width: auto;
 
-
margin: 10px;
 
-
margin-left: -100px;
 
-
}
 
-
.right{
 
-
float: right;
 
-
height: auto;
 
-
max-width: auto;
 
-
margin: 10px;
 
-
margin-right: -100px;
 
-
}
 
-
table.sequence_description {
 
-
background-color: white;
 
-
border-collapse:collapse;
 
-
border:5px solid #0B6138;
 
-
border-radius:8px; 
 
-
box-shadow: 0px 0px 10px #888888;
 
-
-webkit-box-shadow: 0px 0px 12px #888888;
 
-
-moz-box-shadow: 0px 0px 12px #888888;
 
-
}
 
-
table.sequence_description p {
 
-
font-family: "Lucida sans unicode", sans-serif;
 
-
font-size: 12px;
 
-
margin-left: 10px;
 
-
margin-right: 10px;
 
}
}
</style>
</style>
Line 57: Line 27:
<div class="the_content">
<div class="the_content">
<div class="subject">
<div class="subject">
-
<h3>TRIPARTITE SPLIT GFP</h3>
+
<h3>TWITTER FEED</h3>
</div>
</div>
<div class="description">
<div class="description">
-
<p>In our split-GFP project we utilize tripartite split GFP fused to FAB (fragment antigen-binding) fragments  so that when two FAB fragments with GFP β-strand 10 and 11 bind to the same antigen, both β-strands will always be close together and fuse with any passing GFP fragments containing β-strand 1-9 with a high affinity. This system could in theory be applied to any molecule or protein containing multiple close-proximity binding sites with known antibodies. <img src="https://static.igem.org/mediawiki/2014/4/45/Team_UNIK_Copenhagen_Split_GFP_illustration.PNG" class="right"> The capsid proteins of viruses are repetitive structures assembled from a large amount of monomeric units. Therefore antibodies targeting these monomeric units should be able to bind in a large quantity in close proximity. <br><br>
 
-
To achieve this system we found a suitable antigen in the Tobacco Mosaic Virus (TMV),  a plant pathogen, and an associated compatible antibody. In our project we construct FAB fragments from this antibody fused with a GFP β-strand 10 or 11 using a flexible linker. By transforming this construct together with a preceding signal peptide, into one line of yeast cells, and the remaining β-strand 1-9 GFP fragment with a preceding signal peptide into another line to avoid GFP fusing within the cells, a mix of these two lines will secrete both types of FAB fragments and the free split GFP 1-9 into their media. When a sample is added to this media, an increase in fluorescence will be indicative of the presence of TMV capsid protein.<br><br>
 
-
<img src="https://static.igem.org/mediawiki/2014/4/42/Team_UNIK_Copenhagen_Split_GFP_illustration2.PNG">
 
-
Once a yeast strain with a FAB fragment compatible to a desired pathogen is established, production costs of the system should be very low. And due to the low-tech of the finished product, we imagine being able to ship out bags containing dry-yeast and media powder for easy diagnostic field tests in any remote part of the world, with only water, sample of interest and a UV light being needed.<br>
 
-
</p>
 
-
</div>
 
-
 
-
<div class="subject">
 
-
<h3>GENE CONSTRUCTS</h3>
 
-
</div>
 
-
<div class="description">
 
-
<p><br><b>Touch</b> the lego bricks to see what sequences the gene consist of and <b>click</b> on the sequences to read more about their function.</p>
 
-
 
-
<p>Gene construct 1: HeavyChain-GFP10</p>
 
-
<img src="https://static.igem.org/mediawiki/2014/2/2d/Team_UNIK_Copenhagen_GFP_construct9.png"  usemap="#MapGENE1" border="0">
 
-
<p>Gene construct 2: HeavyChain-GFP11</p>
+
<a class="twitter-timeline" href="https://twitter.com/iGEMkbh" data-widget-id="499922331175636993">Tweets by @iGEMkbh</a>
-
<img src="https://static.igem.org/mediawiki/2014/2/2d/Team_UNIK_Copenhagen_GFP_construct9.png"  usemap="#MapGENE2" border="0">
+
<script>!function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0],p=/^http:/.test(d.location)?'http':'https';if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src=p+"://platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs");</script>
-
 
+
-
<p>Gene construct 3: LightChain</p>
+
-
<img src="https://static.igem.org/mediawiki/2014/6/67/Team_UNIK_Copenhagen_GFP_construct3.PNG"  usemap="#MapGENE3" border="0">
+
-
 
+
-
<p>Gene construct 4: GFP1-9</p>
+
-
<img src="https://static.igem.org/mediawiki/2014/4/47/Team_UNIK_Copenhagen_GFP_construct8.png"  usemap="#MapGENE4" border="0">
+
-
 
+
-
<p>Gene construct 5: Antigen</p>
+
-
<img src="https://static.igem.org/mediawiki/2014/1/13/Team_UNIK_Copenhagen_GFP_construct7.png" usemap="#MapGENE5" border="0">
+
-
+
-
 
+
-
<p><br></p>
+
-
 
+
-
<map name="MapGENE1">
+
-
  <area shape="rect" coords="2,1,48,45" title="Flanking side: CAN1" type="button" onclick="can1Function();">
+
-
  <area shape="rect" coords="50,1,92,45" title="Signal peptide" onclick="sigpepFunction();">
+
-
  <area shape="rect" coords="94,1,214,45" title="Variable domain of the heavy chain" onclick="hcvFunction();">
+
-
  <area shape="rect" coords="216,1,345,45" title="Conserved domain of the heavy chain" onclick="hccFunction();">
+
-
  <area shape="rect" coords="347,1,418,45" title="Linker" onclick="linkFunction();">
+
-
  <area shape="rect" coords="420,1,495,45" title="Split-GFP 10" onclick="gfp10Function();">
+
-
  <area shape="rect" coords="497,1,548,45" title="Flanking side: CAN1" onclick="can1Function();">
+
-
</map>
+
-
 
+
-
<map name="MapGENE2">
+
-
  <area shape="rect" coords="2,2,48,77" title="Flanking side: CAN1" type="button" onclick="can1Function();">
+
-
  <area shape="rect" coords="50,2,92,77" title="Signal peptide" onclick="sigpepFunction();">
+
-
  <area shape="rect" coords="94,2,214,77" title="Variable domain of the heavy chain" onclick="hcvFunction();">
+
-
  <area shape="rect" coords="216,2,345,77" title="Conserved domain of the heavy chain" onclick="hccFunction();">
+
-
  <area shape="rect" coords="347,2,418,77" title="Linker" onclick="linkFunction();">
+
-
  <area shape="rect" coords="420,2,495,77" title="Split-GFP 11" onclick="gfp11Function();">
+
-
  <area shape="rect" coords="497,2,548,77" title="Flanking side: CAN1" onclick="can1Function();">
+
-
</map>
+
-
 
+
-
<map name="MapGENE3">
+
-
  <area shape="rect" coords="13,12,68,78" title="Flanking side: ura3" type="button" onclick="ura3Function();">
+
-
  <area shape="rect" coords="74,12,158,78" title="Signal peptide" onclick="sigpepFunction();">
+
-
  <area shape="rect" coords="164,12,278,78" title="Variable domain of the light chain" onclick="lcvFunction();">
+
-
  <area shape="rect" coords="283,12,402,78" title="Conserved domain of the light chain" onclick="lccFunction();">
+
-
  <area shape="rect" coords="404,12,461,78" title="Flanking side: ura3" onclick="ura3Function();">
+
-
</map>
+
-
 
+
-
<map name="MapGENE4">
+
-
  <area shape="rect" coords="2,2,48,77" title="Flanking side: CAN1" type="button" onclick="can1Function();">
+
-
  <area shape="rect" coords="50,2,92,77" title="Signal peptide" onclick="sigpepFunction();">
+
-
  <area shape="rect" coords="94,2,345,77" title="GFP 1-9" onclick="gfp19Function();">
+
-
  <area shape="rect" coords="347,2,398,77" title="Flanking side: CAN1" onclick="can1Function();">
+
-
</map>
+
-
 
+
-
<map name="MapGENE5">
+
-
  <area shape="rect" coords="2,2,48,77" title="Flanking side: CAN1" type="button" onclick="can1Function();">
+
-
  <area shape="rect" coords="50,2,301,77" title="Tobacco Mosaic Virus coating protein" onclick="TMVFunction();">
+
-
  <area shape="rect" coords="303,2,355,77" title="Flanking side: CAN1" onclick="can1Function();">
+
-
</map>
+
-
 
+
-
<table class="sequence_description" id="about_gene"></table></div>
+
-
 
+
-
<script>
+
-
function ura3Function() {
+
-
    document.getElementById("about_gene").innerHTML="<p>The <i>ura3</i> sequence consist of 40 bp identical to sequences flanking the ORF in the <i>ura3</i> gene of Saccharomyces cerevisiae. These allow for homologous recombination of our genes directly into the yeast genome, replacing the existing protein product, OCDase, while still using the existing promoter region.<br><br>OCDase is an enzyme involved in Uracil synthesis, also capable of converting 5-Flourooric Acid into toxic compound 5-Florouracil, causing cell death. This allows us to select for transformants having the <i>ura3</i> gene replaced by our gene insert.</p>";
+
-
}
+
-
 
+
-
function sigpepFunction() {
+
-
    document.getElementById("about_gene").innerHTML="<p>This sequence codes for a signal peptide that is a 19-20 amino acid region in the N-terminal end of proteins. Once translated, this will bind to transporter that moves the ribosome to the ER membrane and ensures translation across and into the ER. From here the signal peptide is cleaved off and the rest of the protein can be secreted using the Golgi apparatus.<br><br>The sequence of our signal peptide was taken from the yeast <i>suc2</i> gene, a gene that encodes a constitutively secreted sucrose invertase.</p>";
+
-
}
+
-
 
+
-
function lcvFunction() {
+
-
    document.getElementById("about_gene").innerHTML="<p>This sequence codes for the variable domain of the light chain. When structurally adjacent to a heavy chain variable domain, these sequences encode the antigen binding domain of an Antibody.<br><br>Our Variable domain sequences originate from a paper describing the variable regions of monoclonal mouse antibodies against Tobacco Mosaic Virus.</p>";
+
-
}
+
-
 
+
-
function lccFunction() {
+
-
    document.getElementById("about_gene").innerHTML="<p>This sequence codes for the conserved domain of the light chain.Fused with the light chain variable domain, these two domains makes up the entire Light Chain of our FAB fragment. Containing an exposed cysteine, this will form a disulfide bridge to a similar exposed cysteine on the Heavy Chain Conserved domain. Once bound together, the Light and Heavy Chains will form the finished FAB fragment.<br><br>The sequence of our light chain conserved domain was obtained from UniProt.</p>";
+
-
}
+
-
 
+
-
function hcvFunction() {
+
-
    document.getElementById("about_gene").innerHTML="<p>When structurally adjacent to a Light Chain Variable domain, these sequences encode the antigen binding part of an Antibody. Our Variable domain sequences originate from a paper describing the variable regions of monoclonal mouse antibodies against Tobacco Mosaic Virus.</p>";
+
-
}
+
-
 
+
-
function hccFunction() {
+
-
    document.getElementById("about_gene").innerHTML="<p>Fused with the Heavy Chain Variable domain, these two domains makes up the entire Heavy Chain of our FAB fragment. Containing an exposed cysteine, this will form a disulfide bridge to a similar exposed cysteine on the Light Chain Conserved domain. Once bound together, the Heavy and Light Chains will form the finished FAB fragment.<br><br>The sequence of our Heavy Chain Conserved domain is the CH1 domain of a full Heavy Chain obtained from UniProt.</p>";
+
-
}
+
-
 
+
-
function can1Function() {
+
-
    document.getElementById("about_gene").innerHTML="<p>40 bp sequences identical to sequences flanking the ORF in the CAN1 gene of Saccharomyces cerevisiae. These allow for homologous recombination of our genes directly into the yeast genome, replacing the existing protein product, a transmembrane arginine transporter, while still using the existing promoter region.  This transporter also allows the uptake of the toxic compound Canavanine, allowing us to select for transformants as they will lack the transporter.</p>";
+
-
}
+
-
 
+
-
function gfp10Function() {
+
-
    document.getElementById("about_gene").innerHTML="<p>The 10’th β-strand of Green Fluorescent Protein (GFP), when combined with strand 1-9 and 11 will fuse to functional fluorescing GFP.<br><br>Sequence obtained from paper describing tripartite split-GFP</p>";
+
-
}
+
-
 
+
-
function gfp11Function() {
+
-
    document.getElementById("about_gene").innerHTML="<p>The 11’th β-strand of Green Fluorescent Protein (GFP), when combined with strand 1-9 and 10 will fuse to functional fluorescing GFP.<br><br>Sequence obtained from paper describing tripartite split-GFP</p>";
+
-
}
+
-
 
+
-
function gfp19Function() {
+
-
    document.getElementById("about_gene").innerHTML="<p>Green Fluorescent Protein (GFP) lacking the 10’th and 11’th β-strands, when recombined with strand 10 and 11 will fuse to functional fluorescing GFP.<br><br>Sequence obtained from paper describing tripartite split-GFP</p>";
+
-
}
+
-
 
+
-
function linkFunction() {
+
-
    document.getElementById("about_gene").innerHTML="<p>A repeating Gly-Gly-Gly-Gly-Ser peptide containing 13 repetitions, allowing it to span one half of the distance between two binding sites on the Tobacco Mosaic Virus Capsid Protein. This allows the split GFP peptides of two adjacent bound FAB fragments to reach each other. The (Gly4Ser)n peptide is a commonly linker with high flexibility and water solubility.</p>";
+
-
}
+
-
 
+
-
function TMVFunction() {
+
-
    document.getElementById("about_gene").innerHTML="<p>The coating protein the of the Tobacco Mosaic Virus, this serves as our antigen. A single protein is only 158 amino acids long, but several thousand such proteins will self-assemble into the long spiraling Capsid protein with 16.3 proteins per helical turn. With antibody binding sites on the outside of the spiral and a diameter of 18 nm, amounting to a 3½ nm distance between each site, this should supply an ample amount of binding sites for our FAB fragments.<br><br>Sequence obtained from UniProt</p>";
+
-
}
+
-
 
+
-
</script>
+
-
 
+
 +
</div>
</div>
</div>
</html>
</html>
 +

Latest revision as of 14:16, 14 August 2014




TWITTER FEED