Team:Imperial/Modelling

From 2014.igem.org

(Difference between revisions)
(Created page with "{{:Team:Imperial/Templates:header}} <html> <body> <div class="content-wrapper"> <h1>Modelling</h1> <div class="pure-g"> <div class="pure-...")
 
(4 intermediate revisions not shown)
Line 17: Line 17:
                 <div class="pure-u-1-3">
                 <div class="pure-u-1-3">
                     <div class="content content-single">
                     <div class="content content-single">
-
                          
+
                         <img class="bg" src="https://static.igem.org/mediawiki/2014/1/15/IC14-modelling-wowcode.png">
                          
                          
                     </div>
                     </div>
Line 25: Line 25:
                     <div class="content content-single">
                     <div class="content content-single">
                         <h2>Induction Model</h2>
                         <h2>Induction Model</h2>
-
                         <p></p>
+
                         <p><em>ATCC53582</em> is capable of inducible high yielding bacterial cellulose production controlled by IPTG concentrations. This model predicts the optimal time of inducing cellulose production during bacterial population growth in order to maximise yields. </p>
                         <div class="more-box more-box-bottom"><a href="https://2014.igem.org/Team:Imperial/Induction_Model">read more...</a></div>
                         <div class="more-box more-box-bottom"><a href="https://2014.igem.org/Team:Imperial/Induction_Model">read more...</a></div>
Line 34: Line 34:
                     <div class="content content-single">
                     <div class="content content-single">
                         <h2>CBD Kinetics Model</h2>
                         <h2>CBD Kinetics Model</h2>
-
                         <p></p>
+
                         <p> The kinetics of attaching cellulose-binding domains (CBDs) to cellulose can be modelled using differential equations. This model calculates the time required for a specified percentage of binding sites on bacterial cellulose to be saturated given an initial concentration of available CBDs.</p>
                         <div class="more-box more-box-bottom"><a href="https://2014.igem.org/Team:Imperial/CBD_Kinetics_Model">read more...</a></div>
                         <div class="more-box more-box-bottom"><a href="https://2014.igem.org/Team:Imperial/CBD_Kinetics_Model">read more...</a></div>
Line 42: Line 42:
                 <div class="pure-u-1-3">
                 <div class="pure-u-1-3">
                     <div class="content content-single">
                     <div class="content content-single">
-
                         <h2>Pellice Model</h2>
+
                         <h2>Nutrient Diffusion Simulations</h2>
-
                         <p></p>
+
                         <p> This approach simulates the growth and maintenance of cell population under satisfied nutrient condition as well as taking individual cell motility into consideration and attempting to capture the decision making and orienting processes of each cell. </p>
-
                         <div class="more-box more-box-bottom"><a href="https://2014.igem.org/Team:Imperial/Pellicle_Model">read more...</a></div>
+
                         <div class="more-box more-box-bottom"><a href="https://2014.igem.org/Team:Imperial/Nutrient_Diffusion_Simulations">read more...</a></div>
                     </div>
                     </div>
Line 51: Line 51:
                 <div class="pure-u-1-3">
                 <div class="pure-u-1-3">
                     <div class="content content-single">
                     <div class="content content-single">
 +
                        <h2>BioHackspace Model</h2>
 +
                        <p>The collaboration is dedicated to provide <a target="blank_" href="https://2014.igem.org/Team:London_BioHackspace">London BioHackspace iGEM Team</a> an easy approach to simulate the 3D shape of their bacterial cellulose (BC) sculpture. </p>
 +
                        <div class="more-box more-box-bottom"><a href="https://2014.igem.org/Team:Imperial/BioHackspace_Model">read more...</a></div>
                     </div>
                     </div>

Latest revision as of 01:58, 14 December 2014

Imperial iGEM 2014

Modelling

Introduction

We approached cellulose production and modification with several key questions: Which conditions produce the greatest yields? When should we induce over-production? How efficient will our functionalised cellulose be? We performed in-silico experiments, informed by our wet-lab work, to study growth, cellulose synthesis and the activity of our biomaterial. The results were integrated back into our experiments to enhance the production and function of our biomaterial.

Induction Model

ATCC53582 is capable of inducible high yielding bacterial cellulose production controlled by IPTG concentrations. This model predicts the optimal time of inducing cellulose production during bacterial population growth in order to maximise yields.

CBD Kinetics Model

The kinetics of attaching cellulose-binding domains (CBDs) to cellulose can be modelled using differential equations. This model calculates the time required for a specified percentage of binding sites on bacterial cellulose to be saturated given an initial concentration of available CBDs.

Nutrient Diffusion Simulations

This approach simulates the growth and maintenance of cell population under satisfied nutrient condition as well as taking individual cell motility into consideration and attempting to capture the decision making and orienting processes of each cell.

BioHackspace Model

The collaboration is dedicated to provide London BioHackspace iGEM Team an easy approach to simulate the 3D shape of their bacterial cellulose (BC) sculpture.