|
|
(47 intermediate revisions not shown) |
Line 356: |
Line 356: |
| <div id="logo"> | | <div id="logo"> |
| <h1 style="color: #ebebeb">Modeling</h1> | | <h1 style="color: #ebebeb">Modeling</h1> |
- | <p style="color: #ebebeb"></p> | + | <p style="color: #ebebeb">Click <a href="https://static.igem.org/mediawiki/2014/3/3d/Modeling-Everything_Ever.pdf" target="_blank" style="color:white;"><u>here</u></a> for full modeling file</p> |
| </div> | | </div> |
| | | |
- | <!-- Nav -->
| + | <!-- Nav --> |
- |
| + | <nav id="nav"> |
- |
| + | |
- | <nav id="nav">
| + | |
| | | |
| <ul> | | <ul> |
Line 369: |
Line 367: |
| <a href="https://2014.igem.org/Team:Technion-Israel/Project">Project</a> | | <a href="https://2014.igem.org/Team:Technion-Israel/Project">Project</a> |
| <ul class="sub1"> | | <ul class="sub1"> |
- | <li id="child1"><a href="Project.html#idea">The idea</a></li> | + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Project#idea">The idea</a></li> |
- | <li id="child1"><a href="Project.html#idea">How it works</a></li> | + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Project#howitworks">How it works</a></li> |
- | <li id="child1"><a href="Project.html#idea">Alpha System</a></li> | + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Project#alpha">Alpha System</a></li> |
- | <li id="child1"><a href="Project.html#idea">Beta System</a></li> | + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Project#beta">Beta System</a></li> |
- | <li id="child1"><a href="Project.html#idea">RNA splint</a></li> | + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Project#rna">RNA splint</a></li> |
- | <li id="child1"><a href="Project.html#azo">Azobenzene</a></li> | + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Project#azo">Azobenzene</a></li> |
- | <li id="child1"><a href="Project.html#HK">Histidine Kinase</a></li> | + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Project#hk">Histidine Kinase</a></li> |
- | <li id="child1"><a href="Project.html#gate">New Method</a></li> | + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Project#newmethod">New Method</a></li> |
- | <li id="child1"><a href="Project.html#experiments">Experiments</a></li> | + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Project#protocol">Protocols</a></li> |
- | <li id="child1"><a href="Project.html#methods">Protocols</a></li>
| + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Project#notebook">Lab Notebook</a></li> |
- | <li id="child1"><a href="Project.html#notebook">Lab Notebook</a></li> | + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Project#safety">Safety</a></li> |
- | <li id="child1"><a href="Project.html#safety">Safety</a></li> | + | |
| </ul> | | </ul> |
| </li> | | </li> |
| <li id="parent"><a href="https://2014.igem.org/Team:Technion-Israel/Modeling">Modeling</a> | | <li id="parent"><a href="https://2014.igem.org/Team:Technion-Israel/Modeling">Modeling</a> |
| <ul class="sub1"> | | <ul class="sub1"> |
- | <li id="child1"><a href="#">Why should it work</a></li> | + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Modeling#whyworks">Why should it work</a></li> |
- | <li id="child1"><a href="#">Why should it fail</a></li> | + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Modeling#whyfail">Why should it fail</a></li> |
- | <li id="child1"><a href="#">RNA Splint</a></li> | + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Modeling#splint">RNA Splint</a></li> |
- | <li id="child1"><a href="#">Synthetic Biofilm<br>Formation</a></li> | + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Modeling#biofilm">Synthetic Biofilm<br>Formation</a></li> |
| + | </ul> |
| + | </li> |
| + | |
| + | <li id="parent"><a href="https://2014.igem.org/Team:Technion-Israel/Experiments">Experiments</a> |
| + | <ul class="sub1"> |
| + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Experiments#gate1">Gate 1</a></li> |
| + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Experiments#gate2">Gate 2</a></li> |
| + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Experiments#rna">RNA Splint</a></li> |
| + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Experiments#pompc">Pompc-RFP</a></li> |
| + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Experiments#taz">TaZ</a></li> |
| + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Experiments#mcherry">mCherry</a></li> |
| + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Experiments#amilcp">amilCP</a></li> |
| + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Experiments#azo">Azobenzene</a></li> |
| </ul> | | </ul> |
| </li> | | </li> |
Line 395: |
Line 405: |
| <a href="https://2014.igem.org/Team:Technion-Israel/HP">Policy & Practices</a> | | <a href="https://2014.igem.org/Team:Technion-Israel/HP">Policy & Practices</a> |
| <ul class="sub1"> | | <ul class="sub1"> |
- | <li id="child1"><a href="#">SynBio in 3 Languages</a></li>
| + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/HP#3lang">SynBio in 3 Languages</a></li> |
- | <li id="child1"><a href="#">iGEM High Schools</a></li>
| + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/HP#highschool">iGEM High Schools</a></li> |
- | <li id="child1"><a href="#">SynBio Lectures</a></li>
| + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/HP#lectures">SynBio Lectures</a></li> |
- | <li id="child1"><a href="#">Collaborations</a></li>
| + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/HP#collab">Collaborations</a></li> |
- | <li id="child1"><a href="#">From the Media</a></li> | + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/HP#art">Art</a></li> |
| </ul> | | </ul> |
| </li> | | </li> |
Line 405: |
Line 415: |
| <a href="https://2014.igem.org/Team:Technion-Israel/Team">The Team</a> | | <a href="https://2014.igem.org/Team:Technion-Israel/Team">The Team</a> |
| <ul class="sub1"> | | <ul class="sub1"> |
- | <li id="child1"><a href="#">Members</a></li>
| + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Team#members">Members</a></li> |
- | <li id="child1"><a href="#">Mentors</a></li>
| + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Team#mentors">Mentors</a></li> |
- | <li id="child1"><a href="#">Gallery</a></li>
| + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Team#gallery">Gallery</a></li> |
- | <li id="child1"><a href="https://igem.org/Team.cgi?id=1343" target="_blank">Official Team Profile</a></li>
| + | <li id="child1"><a href="https://igem.org/Team.cgi?id=1343" target="_blank">Official Team<br>Profile</a></li> |
- | <li id="child1"><a href="https://www.facebook.com/iGEM2014.Technion" target="_blank">Official Facebook Page</a></li>
| + | <li id="child1"><a href="https://www.facebook.com/iGEM2014.Technion" target="_blank">Official Facebook<br>Page</a></li> |
| </ul> | | </ul> |
| </li> | | </li> |
Line 415: |
Line 425: |
| <a href="https://2014.igem.org/Team:Technion-Israel/Support">Special Thanks</a> | | <a href="https://2014.igem.org/Team:Technion-Israel/Support">Special Thanks</a> |
| <ul class="sub1"> | | <ul class="sub1"> |
- | <li id="child1"><a href="#">Headstart Supporters</a></li>
| + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Support#headstart">Headstart Supporters</a></li> |
- | <li id="child1"><a href="#">Attributions</a></li>
| + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Support#attributions">Attributions</a></li> |
- | <li id="child1"><a href="#">Sponsors</a></li>
| + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Support#sponsors">Sponsors</a></li> |
| </ul> | | </ul> |
| </li> | | </li> |
Line 423: |
Line 433: |
| <a href="https://2014.igem.org/Team:Technion-Israel/Judging">Judging</a> | | <a href="https://2014.igem.org/Team:Technion-Israel/Judging">Judging</a> |
| <ul class="sub1"> | | <ul class="sub1"> |
- | <li id="child1"><a href="https://igem.org/2014_Judging_Form?id=1343" target="_blank">Judging Form</a></li>
| + | <li id="child1"><a href="https://igem.org/2014_Judging_Form?id=1343" target="_blank">Judging Form</a></li> |
- | <li id="child1"><a href="#">Results</a></li>
| + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Judging#biobrick">BioBricks</a></li> |
- | <li id="child1"><a href="#">BioBricks</a></li>
| + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Judging#results">Results</a></li> |
- | <li id="child1"><a href="#">Judging Criteria</a></li>
| + | |
| </ul> | | </ul> |
| </li> | | </li> |
Line 433: |
Line 442: |
| | | |
| | | |
- | </nav> | + | </nav> |
- |
| + | |
| | | |
| | | |
Line 441: |
Line 449: |
| | | |
| <div class="wrapper style2"> | | <div class="wrapper style2"> |
- | <div class="title" id="safety">Why Should it Work</div> | + | <div class="title" id="whyworks">Why it Should Work</div> |
| <div id="main" class="container"> | | <div id="main" class="container"> |
| | | |
Line 448: |
Line 456: |
| <header class="style1"> | | <header class="style1"> |
| <center> | | <center> |
- | <h1>Why Alpha System Should Work – a deterministic model of alpha system</h1> | + | <h1 style="font-size: 2em;">Why Alpha System Should Work – a deterministic model of alpha system</h1> |
- | <p>When modelling our system, we began with the simplest method known – deterministic rate equations. Moreover, from the design it was clear that the most important benchmark for the signal within the system would be the concentration of AHL as a function of time, so we began by modelling this part of our system. It took only a simple derivation (see [1]) to obtain these equations which characterize this part of the system:</p> | + | <p style="font-size: 1.1em;">When modelling our system, we began with the simplest method known – deterministic rate equations. Moreover, from the design it was clear that the most important benchmark for the signal within the system would be the concentration of AHL as a function of time, so we began by modelling this part of our system. It took only a simple derivation (see [1]) to obtain these equations which characterize this part of the system:</p> |
| <div class="formula"> | | <div class="formula"> |
| <span class="fraction"><span class="ignored">(</span><span class="numerator"><i>d</i><span class="symbol">[</span><i>mRNA</i><sub><i>LuxI</i></sub><span class="symbol">]</span></span><span class="ignored">)/(</span><span class="denominator"><i>dt</i></span><span class="ignored">)</span></span> = <span class="fraction"><span class="ignored">(</span><span class="numerator"><i>v</i><sub><i>B</i></sub> + <i>v</i><sub><i>A</i></sub><i>k</i><sub><i>A</i></sub><span class="symbol">[</span><i>AHL</i><span class="symbol">]</span><sup>2</sup></span><span class="ignored">)/(</span><span class="denominator">1 + <i>k</i><sub><i>A</i></sub><span class="symbol">[</span><i>AHL</i><span class="symbol">]</span><sup>2</sup></span><span class="ignored">)</span></span> − <i>γ</i><sub><i>mRNA</i><sub><i>LuxI</i></sub></sub><span class="symbol">[</span><i>mRNA</i><sub><i>LuxI</i></sub><span class="symbol">]</span> + <i>GateI</i> | | <span class="fraction"><span class="ignored">(</span><span class="numerator"><i>d</i><span class="symbol">[</span><i>mRNA</i><sub><i>LuxI</i></sub><span class="symbol">]</span></span><span class="ignored">)/(</span><span class="denominator"><i>dt</i></span><span class="ignored">)</span></span> = <span class="fraction"><span class="ignored">(</span><span class="numerator"><i>v</i><sub><i>B</i></sub> + <i>v</i><sub><i>A</i></sub><i>k</i><sub><i>A</i></sub><span class="symbol">[</span><i>AHL</i><span class="symbol">]</span><sup>2</sup></span><span class="ignored">)/(</span><span class="denominator">1 + <i>k</i><sub><i>A</i></sub><span class="symbol">[</span><i>AHL</i><span class="symbol">]</span><sup>2</sup></span><span class="ignored">)</span></span> − <i>γ</i><sub><i>mRNA</i><sub><i>LuxI</i></sub></sub><span class="symbol">[</span><i>mRNA</i><sub><i>LuxI</i></sub><span class="symbol">]</span> + <i>GateI</i> |
Line 459: |
Line 467: |
| <span class="fraction"><span class="ignored">(</span><span class="numerator"><i>d</i><span class="symbol">[</span><i>AHL</i><span class="symbol">]</span></span><span class="ignored">)/(</span><span class="denominator"><i>dt</i></span><span class="ignored">)</span></span> = <i>α</i><sub><i>AHL</i></sub><span class="symbol">[</span><i>AHL</i><span class="symbol">]</span> − <i>γ</i><sub><i>AHL</i></sub><span class="symbol">[</span><i>AHL</i><span class="symbol">]</span> | | <span class="fraction"><span class="ignored">(</span><span class="numerator"><i>d</i><span class="symbol">[</span><i>AHL</i><span class="symbol">]</span></span><span class="ignored">)/(</span><span class="denominator"><i>dt</i></span><span class="ignored">)</span></span> = <i>α</i><sub><i>AHL</i></sub><span class="symbol">[</span><i>AHL</i><span class="symbol">]</span> − <i>γ</i><sub><i>AHL</i></sub><span class="symbol">[</span><i>AHL</i><span class="symbol">]</span> |
| </div> | | </div> |
- | <p>(For a glossary see [1]).</p> | + | <p style="font-size: 1.1em;">(For a glossary see [1]).</p> |
- | <p>We began to analyze this system by attempting to simplify it, by assuming a steady state solution wherever possible. Using this method (see [2]) we managed to obtain this equation:</p> | + | <p style="font-size: 1.1em;">We began to analyze this system by attempting to simplify it, by assuming a steady state solution wherever possible. Using this method (see [2]) we managed to obtain this equation:</p> |
| <div class="Indented"> | | <div class="Indented"> |
| <div class="formula"> | | <div class="formula"> |
Line 466: |
Line 474: |
| </div> | | </div> |
| </div> | | </div> |
- | <p>It is clear from the goals of our system, that we want to have some sort of bi-stability in the result, when Gate I is small (see [2]). The answer to whether this condition is met, would obviously depend on the constants of the system for which we could not find a reliable source, but using a simple geometric analysis of the phase space (see [3]), we were able to produce a graph showing for which values of (v_A,v_B) we could configure the system (by changing the IPTG concentration and the OD) to show bi-stability:</p> | + | <p style="font-size: 1.1em;">It is clear from the goals of our system, that we want to have some sort of bi-stability in the result, when the term Gate I is small (see [2]). The answer to whether this condition is met, would obviously depend on the constants of the system for which we could not find a reliable source, but using a simple geometric analysis of the phase space (see [3]), we were able to produce a graph showing for which values of (v<sub>1</sub>,v<sub>2</sub>) we could configure the system (by changing the IPTG concentration and the OD) to show bi-stability:</p> |
- | <p>map of bi-stability in the alpha system</p> | + | <p style="font-size: 1.1em;"> |
- | </center> | + | <div class="Unindented"> |
| + | <div class="float"> |
| + | <a class="Label" name="Figure-1"> </a><div class="figure"> |
| + | <img class="embedded" src="https://static.igem.org/mediawiki/2014/e/ec/Technion-Israel-AlphaBool.jpg" style="width: 540px; max-width: 1200px; height: 405px; max-height: 900px;"> |
| + | <img class="embedded" src="https://static.igem.org/mediawiki/2014/f/fe/Technion-Israel-AlphaNorm.jpg" alt="figure AlphaNorm.jpg" style="width: 540px; max-width: 1200px; height: 405px; max-height: 900px;"> |
| + | <div class="caption"> |
| + | Figure 1 On the left:a map of the values of the parameters of the system for which it is bi-stable (bi-stable in red, mono-stable in blue). On the right: a map of the normalized bi-stability parameter we have defined as a function of its parameters. |
| + | </div> |
| + | </p> |
| + | <p style="font-size: 1.1em;">It is clear from this graph, that the alpha system is bi-stable for a large part of the range of possible inputs.</p> |
| + | </center> |
| </header> | | </header> |
| </article> | | </article> |
Line 479: |
Line 497: |
| | | |
| <div class="wrapper style3"> | | <div class="wrapper style3"> |
- | <div class="title" id="HK">Why Should it Fail</div> | + | <div class="title" id="whyfail">Why it Should Fail</div> |
| <div id="highlights" class="container"> | | <div id="highlights" class="container"> |
| + | <center> |
| + | <h1 style="font-size: 2em;">Why Alpha System Should Fail – a stochastic model of alpha system</h1> |
| + | <p>The above model assumes a low-noise system (as do all rate equation models), but especially when constructing a bi-stable network, it is important to consider the noise. To do this we need to create a stochastic model, which in our case, we based upon the commonly used Fokker Planck equation. Using the derivation found in [4] (Van Kampen "Stochastic Processes in Physics and Chemistry", Third Edition), we produced the Fokker Planck variant of the equation for the AHL concentration shown above</p> |
| + | <p>After analyzing this equation as explained in [5], we produced the following results (using a point on the (v<sub>1</sub>,v<sub>2</sub>) plane which the previous analysis showed would be bi-stable)</p> |
| + | <div class="Unindented"> |
| + | <div class="float"> |
| + | <a class="Label" name="Figure-1"> </a><div class="figure"> |
| + | <img class="embedded" src="https://static.igem.org/mediawiki/2014/3/3b/1%2C2%2C0.jpg" alt="figure 1,2,0.jpg" style="width: 540px; max-width: 1200px; height: 405px; max-height: 900px;"> |
| + | <img class="embedded" src="https://static.igem.org/mediawiki/2014/2/26/1-2-0.gif" alt="figure 1-2-0.gif" style="width: 540px; max-width: 1200px; height: 405px; max-height: 900px;"> |
| + | <img class="embedded" src="https://static.igem.org/mediawiki/2014/e/e4/1%2C2%2C1.jpg" alt="figure 1,2,1.jpg" style="width: 540px; max-width: 1200px; height: 405px; max-height: 900px;"> |
| + | <img class="embedded" src="https://static.igem.org/mediawiki/2014/b/bf/1-2-1.gif" alt="figure 1-2-1.gif" style="width: 540px; max-width: 1200px; height: 405px; max-height: 900px;"> |
| + | <div class="caption"> |
| + | Figure 1 From Top To Bottom: Fokker Planck in the Alpha System when the system begins off, and then when it begins off: On the left is a heat map of the probability distribution function, as a function of time. On the right is a gif showing the probability distribution function over 100 timelapses |
| + | </div> |
| | | |
| + | </div> |
| + | |
| + | </div> |
| + | |
| + | </div> |
| + | <div class="Indented"> |
| + | Clearly the “on” state (high AHL concentration - low on the graph) of our system is the more stable state of our system - so much so that it can spontaneously switch to the on state. This means that our system is bound to have a high likelihood of false positives. |
| + | </div> |
| + | </center> |
| </div> | | </div> |
| </div> | | </div> |
Line 489: |
Line 530: |
| <div id="footer" class="container"> | | <div id="footer" class="container"> |
| <header class="style1info"> | | <header class="style1info"> |
- | </header>
| + | <center> |
- | <hr />
| + | <h1 style="font-size: 2em;">The RNA Splint – Deterministic and Stochastic Models of this Noise Reduction Method</h1> |
- | | + | <p style="color:#919499">When considering an additional design for our system, we thought of the idea for the RNA splint: |
| + | Basically, instead of directly producing the AHL, the cell will use a system called an <a href="https://2014.igem.org/Team:Technion-Israel/Project#rna" style="color:#919499">RNA Splint</a> to build the mRNA encoding for the production of AHL, in two parts and also produce a third component which would combine the two.<br>Adjusting the equation for the production of AHL <div class="formula"> |
| + | <span style="color:#919499"><span class="fraction"><span class="ignored">(</span><span class="numerator"><i>d</i><span class="symbol">[</span><i>AHL</i><span class="symbol">]</span></span><span class="ignored">)/(</span><span class="denominator"><i>dt</i></span><span class="ignored">)</span></span> = <span class="fraction"><span class="ignored">(</span><span class="numerator"><i>v</i><sub><i>B</i></sub> + <i>v</i><sub><i>A</i></sub><i>k</i><sub><i>A</i></sub><span class="symbol">[</span><i>AHL</i><span class="symbol">]</span><sup>2</sup></span><span class="ignored">)/(</span><span class="denominator">1 + <i>k</i><sub><i>A</i></sub><span class="symbol">[</span><i>AHL</i><span class="symbol">]</span><sup>2</sup></span><span class="ignored">)</span></span> − <i>γ</i><sub><i>AHL</i></sub><span class="symbol">[</span><i>AHL</i><span class="symbol">]</span> + <i>GateI</i> |
| + | </div></span></p> <p style="color:#919499">for this change (see [6]), we obtain two new potential models:</p> |
| + | |
| + | <div class="formula" style="color:#919499"> |
| + | <span class="fraction"><span class="ignored">(</span><span class="numerator"><i>d</i><span class="symbol">[</span><i>AHL</i><span class="symbol">]</span></span><span class="ignored">)/(</span><span class="denominator"><i>dt</i></span><span class="ignored">)</span></span> = <span class="fraction"><span class="ignored">(</span><span class="numerator"><i>v</i><sub><i>B</i></sub> + <i>v</i><sub><i>A</i></sub><i>k</i><sub><i>A</i></sub><span class="symbol">[</span><i>AHL</i><span class="symbol">]</span><sup>6</sup></span><span class="ignored">)/(</span><span class="denominator">1 + <i>k</i><sub><i>A</i></sub><span class="symbol">[</span><i>AHL</i><span class="symbol">]</span><sup>6</sup></span><span class="ignored">)</span></span> − <i>γ</i><sub><i>AHL</i></sub><span class="symbol">[</span><i>AHL</i><span class="symbol">]</span> + <i>GateI</i> |
| + | </div> |
| + | |
| + | <div class="formula" style="color:#919499"> |
| + | <span class="fraction"><span class="ignored">(</span><span class="numerator"><i>d</i><span class="symbol">[</span><i>AHL</i><span class="symbol">]</span></span><span class="ignored">)/(</span><span class="denominator"><i>dt</i></span><span class="ignored">)</span></span> = <span class="array"><span class="arrayrow"><span class="bracket align-left">⎛</span></span><span class="arrayrow"><span class="bracket align-left">⎝</span></span></span><span class="fraction"><span class="ignored">(</span><span class="numerator"><i>v</i><sub><i>B</i></sub> + <i>v</i><sub><i>A</i></sub><i>k</i><sub><i>A</i></sub><span class="symbol">[</span><i>AHL</i><span class="symbol">]</span><sup>2</sup></span><span class="ignored">)/(</span><span class="denominator">1 + <i>k</i><sub><i>A</i></sub><span class="symbol">[</span><i>AHL</i><span class="symbol">]</span><sup>2</sup></span><span class="ignored">)</span></span><span class="array"><span class="arrayrow"><span class="bracket align-right">⎞</span></span><span class="arrayrow"><span class="bracket align-right">⎠</span></span></span><sup>3</sup> − <i>γ</i><sub><i>AHL</i></sub><span class="symbol">[</span><i>AHL</i><span class="symbol">]</span> + <i>GateI</i> |
| + | </div> |
| + | |
| + | <p style="color:#919499">We thought these changes would improve the bi-stability of the system (thereby reducing the odds of a false positive), because they enhance the non-linearity inherent in the system which has been shown to play a vital role in the bi-stability of the system ([9],[10]). When producing a similar analysis for the phase plane of this gate as we did for the phase plane of the original equation (see [7]), we found the values of (v<sub>1</sub>,v<sub>2</sub>) for which the system is bi-stable, and compared this analysis to the results of the analysis of the original analysis.</p> |
| + | <p style="color:#919499"> |
| + | <div class="Unindented"> |
| + | <div class="float"> |
| + | <a class="Label" name="Figure-2"> </a><div class="figure"> |
| + | <img class="embedded" src="https://static.igem.org/mediawiki/2014/e/ec/Technion-Israel-AlphaBool.jpg" style="width: 540px; max-width: 1200px; height: 405px; max-height: 900px;"> |
| + | <img class="embedded" src="https://static.igem.org/mediawiki/2014/f/fe/Technion-Israel-AlphaNorm.jpg" style="width: 540px; max-width: 1200px; height: 405px; max-height: 900px;"> |
| + | <img class="embedded" src="https://static.igem.org/mediawiki/2014/f/fe/Technion-Israel-RNA1Bool.jpg" style="width: 540px; max-width: 1200px; height: 405px; max-height: 900px;"> |
| + | <img class="embedded" src="https://static.igem.org/mediawiki/2014/c/c0/Technion-Israel-RNA1Norm.jpg" style="width: 540px; max-width: 1200px; height: 405px; max-height: 900px;"> |
| + | <img class="embedded" src="https://static.igem.org/mediawiki/2014/c/cb/Technion-Israel-RNA2Bool.jpg" style="width: 540px; max-width: 1200px; height: 405px; max-height: 900px;"> |
| + | <img class="embedded" src="https://static.igem.org/mediawiki/2014/6/6a/Technion-Israel-RNA2Norm.jpg" style="width: 540px; max-width: 1200px; height: 405px; max-height: 900px;"> |
| + | |
| + | </div> |
| + | |
| + | </div> |
| + | |
| + | </div> |
| + | </p> |
| + | |
| + | <p style="color:#919499"> |
| + | Figure 2 From top to bottom: The Alpha System, the first model for the RNA Splint, and the second model for the RNA Splint. On the left:a map of the values of the parameters of the system for which it is bi-stable (bi-stable in red, mono-stable in blue). On the right: a map of the normalized bi-stability parameter we have defined as a function of its parameters. |
| + | </p> |
| + | |
| + | |
| + | <p style="color:#919499"> |
| + | It is clear from this graph, that the RNA Splint is more bi-stable than the original alpha system. Moreover, it is clear that in both models of the RNA Splint, it is bi-stable in the same points, but not to the same degree. |
| + | </p> |
| + | |
| + | |
| + | <p style="color:#919499">We then proceeded to produce the Fokker Planck equation for the new system (see [8]), and we got the following results:</p> |
| + | <a class="Label" name="Figure-2"> </a><div class="figure"> |
| + | <img class="embedded" src="https://static.igem.org/mediawiki/2014/3/3b/1%2C2%2C0.jpg" alt="figure 1,2,0.jpg" style="width: 360px; max-width: 1200px; height: 270px; max-height: 900px;"> |
| + | <img class="embedded" src="https://static.igem.org/mediawiki/2014/2/2f/1%2C6%2C0.jpg" alt="figure 1,6,0.jpg" style="width: 360px; max-width: 1200px; height: 270px; max-height: 900px;"> |
| + | <img class="embedded" src="https://static.igem.org/mediawiki/2014/6/68/3%2C2%2C0.jpg" alt="figure 3,2,0.jpg" style="width: 360px; max-width: 1200px; height: 270px; max-height: 900px;"> |
| + | <img class="embedded" src="https://static.igem.org/mediawiki/2014/2/26/1-2-0.gif" alt="figure 1-2-0.gif" style="width: 360px; max-width: 1200px; height: 270px; max-height: 900px;"> |
| + | <img class="embedded" src="https://static.igem.org/mediawiki/2014/f/f9/1-6-0.gif" alt="figure 1-6-0.gif" style="width: 360px; max-width: 1200px; height: 270px; max-height: 900px;"> |
| + | <img class="embedded" src="https://static.igem.org/mediawiki/2014/e/e0/3-2-0.gif" alt="figure 3-2-0.gif" style="width: 360px; max-width: 1200px; height: 270px; max-height: 900px;"> |
| + | <img class="embedded" src="https://static.igem.org/mediawiki/2014/e/e4/1%2C2%2C1.jpg" alt="figure 1,2,1.jpg" style="width: 360px; max-width: 1200px; height: 270px; max-height: 900px;"> |
| + | <img class="embedded" src="https://static.igem.org/mediawiki/2014/4/49/1%2C6%2C1.jpg" alt="figure 1,6,1.jpg" style="width: 360px; max-width: 1200px; height: 270px; max-height: 900px;"> |
| + | <img class="embedded" src="https://static.igem.org/mediawiki/2014/0/04/3%2C2%2C1.jpg" alt="figure 3,2,1.jpg" style="width: 360px; max-width: 1200px; height: 270px; max-height: 900px;"> |
| + | <img class="embedded" src="https://static.igem.org/mediawiki/2014/b/bf/1-2-1.gif" alt="figure 1-2-1.gif" style="width: 360px; max-width: 1200px; height: 270px; max-height: 900px;"> |
| + | <img class="embedded" src="https://static.igem.org/mediawiki/2014/3/38/1-6-1.gif" alt="figure 1-6-1.gif" style="width: 360px; max-width: 1200px; height: 270px; max-height: 900px;"> |
| + | <img class="embedded" src="https://static.igem.org/mediawiki/2014/8/87/3-2-1.gif" alt="figure 3-2-1.gif" style="width: 360px; max-width: 1200px; height: 270px; max-height: 900px;"> |
| + | <div class="caption"> |
| + | <p style="color:#919499">Figure 2 Left to Right: The Alpha System, The <span class="formula">1<sup><i>st</i></sup></span> Model for the RNA Splint, The <span class="formula">2<sup><i>nd</i></sup></span> Model. Top to Bottom: the Heat Map and then the Time-Lapse of the system starting at each of the modes of actiavtion. |
| + | </p></div> |
| + | <div class="Indented"> |
| + | <p style="color:#919499">It is clear that the “on” (high AHL concentration - low on the graph) state of all of these systems is more stable than their off state, and that there is a high likelihood of the systems spontaneously mocing to the “on” state (i.e. false-positive). However, we may notice that for both models of RNA Splint, the time for a shift from the “off” state to the “on” state is longer than for the Alpha System which is to say, that there is a far lower chance of recieving a false positive. |
| + | </p></div> |
| + | </center> |
| + | </header> |
| </div> | | </div> |
| </div> | | </div> |
Line 497: |
Line 601: |
| | | |
| <div class="wrapper style2"> | | <div class="wrapper style2"> |
- | <div class="title" id="safety">Synthetic Biofilm Formation</div> | + | <div class="title" id="biofilm">Synthetic Biofilm Formation</div> |
| <div id="main" class="container"> | | <div id="main" class="container"> |
| | | |
Line 506: |
Line 610: |
| </header> | | </header> |
| </article> | | </article> |
| + | <center> |
| + | <p style:="line-height:1.75em;"> |
| + | <h1 style="font-size:2em;">A Simulated Model for the Azobenzene</h1> |
| + | <br> |
| + | We aimed to create a dynamic simulation of bacteria with Azobenzene molecules attached to their membranes. These molecules, once activated by an outside stimulus (usually a certain wavelength of photons) - will act as a sort of “Velcro” between the bacteria; they attach to other bacteria upon contact forming clusters. |
| + | <br> |
| + | The clusters of bacteria will thereafter act as one unit - a biofim. |
| + | <br> |
| + | With this model we opted for a "brute-force" simulation of particles in a fluid under the following terms: |
| + | <br> |
| + | |
| + | </p> |
| + | </center> |
| + | <div style="margin-left:15%; width:70%;"> |
| + | <ul> |
| + | <li>• The simulation “Playground” will be a discreet matrix of the dimentions x × y × z.</li> |
| + | |
| + | <li>• Each bacterium will occupy a 1 × 1 × 1 point in in space.</li> |
| + | |
| + | <li>• For every t=t+1 passage of time, each bacterium “tumbles” a random amount of steps in a random direction, we called this a "Tumble Vector"</li> |
| + | |
| + | <li>• Each bacterium can have either a “sticky” or “non-sticky” value corresponding to it. This is equivalent of assuming that all azobenzene molecules “switch on” at once in all directions.</li> |
| + | |
| + | <li>• Each sticky bacterium (i.e. with a “sticky” value) will “attach” to any “neighbor” (i.e. a bacterium with a location of 0, ± 1 in either direction), after which they will “tumble” together as one cluster, with their direction being determined by summing up all the bacteria's "Tumble Vectors" together.</li> |
| + | |
| + | <li>• Once a bacterium has a neighbor attached to it, they cannot separate and that neighbor's location is forever occupied by the same bacterium, it cannot be overridden.</li> |
| + | |
| + | <li>• A sticky bacterium on the edge of a cluster can stick to any neighboring bacterium. If said neighbor is already a part of a cluster we now have two clusters joining to form a "super-cluster" – which does not vary in definition from a normal cluster programming-wise.</li> |
| + | </ul> |
| + | </div> |
| + | <br> |
| + | |
| + | <center> |
| + | <p style:="line-height:1.75em;"> |
| + | The simulation was written using C++, using tumble and playground sizes values to simulate the world of actual bacteria. The results were then rendered in MATLAB:<br> |
| + | </p> |
| + | <div class="float"> |
| + | <a class="Label" name="Figure-3"> </a><div class="figure"> |
| + | <img class="embedded" src="https://static.igem.org/mediawiki/2014/a/aa/Nucleation.gif" alt="figure Nucleation.gif" style="width: 642px; height: 304px; margin-left: auto; margin-right: auto;"> |
| + | <div class="caption"> |
| + | Figure 3 A simulation of the clustering of cells in the presence of AB. The simulation contains 10,000 cells of which 2,000 are sticky simulated over 400 secs, with a time-lapse of 4 seconds per image. We can clearly see that over half of the cells are joined into 1 cluster at the end of the simulation, leading us to believe that the clustering would have a visible effect on the OD of the sample. |
| + | </div> |
| + | |
| + | </div> |
| + | |
| + | </div> |
| + | </center> |
| | | |
| </div> | | </div> |