|
|
(35 intermediate revisions not shown) |
Line 11: |
Line 11: |
| | | |
| <title>Safie by Technion-Israel</title> | | <title>Safie by Technion-Israel</title> |
- | <meta http-equiv="content-type" content="text/html; charset=utf-8" /> | + | <meta http-equiv="content-type" content="textwhy/html; charset=utf-8" /> |
| <meta name="description" content="" /> | | <meta name="description" content="" /> |
| <meta name="keywords" content="" /> | | <meta name="keywords" content="" /> |
Line 172: |
Line 172: |
| <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Project#azo">Azobenzene</a></li> | | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Project#azo">Azobenzene</a></li> |
| <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Project#hk">Histidine Kinase</a></li> | | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Project#hk">Histidine Kinase</a></li> |
- | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Project#newmethod">New Method</a></li> | + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Project#newmethod">New Standard</a></li> |
- | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Project#experiments">Experiments</a></li>
| + | |
| <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Project#protocol">Protocols</a></li> | | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Project#protocol">Protocols</a></li> |
| <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Project#notebook">Lab Notebook</a></li> | | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Project#notebook">Lab Notebook</a></li> |
Line 181: |
Line 180: |
| <li id="parent"><a href="https://2014.igem.org/Team:Technion-Israel/Modeling">Modeling</a> | | <li id="parent"><a href="https://2014.igem.org/Team:Technion-Israel/Modeling">Modeling</a> |
| <ul class="sub1"> | | <ul class="sub1"> |
- | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Modeling#whyworks">Why should it work</a></li> | + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Modeling#whyworks">Why it should work</a></li> |
- | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Modeling#whyfail">Why should it fail</a></li> | + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Modeling#whyfail">Why it should fail</a></li> |
| <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Modeling#splint">RNA Splint</a></li> | | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Modeling#splint">RNA Splint</a></li> |
| <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Modeling#biofilm">Synthetic Biofilm<br>Formation</a></li> | | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Modeling#biofilm">Synthetic Biofilm<br>Formation</a></li> |
| + | </ul> |
| + | </li> |
| + | |
| + | <li id="parent"><a href="https://2014.igem.org/Team:Technion-Israel/Experiments">Experiments</a> |
| + | <ul class="sub1"> |
| + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Experiments#gate1">Gate 1</a></li> |
| + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Experiments#gate2">Gate 2</a></li> |
| + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Experiments#rna">RNA Splint</a></li> |
| + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Experiments#pompc">Pompc-RFP</a></li> |
| + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Experiments#taz">TaZ</a></li> |
| + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Experiments#mcherry">mCherry</a></li> |
| + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Experiments#amilcp">amilCP</a></li> |
| + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Experiments#azo">Azobenzene</a></li> |
| </ul> | | </ul> |
| </li> | | </li> |
Line 220: |
Line 232: |
| <ul class="sub1"> | | <ul class="sub1"> |
| <li id="child1"><a href="https://igem.org/2014_Judging_Form?id=1343" target="_blank">Judging Form</a></li> | | <li id="child1"><a href="https://igem.org/2014_Judging_Form?id=1343" target="_blank">Judging Form</a></li> |
- | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Judging#results">Results</a></li>
| |
| <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Judging#biobrick">BioBricks</a></li> | | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Judging#biobrick">BioBricks</a></li> |
- | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Judging#criteria">Judging Criteria</a></li> | + | <li id="child1"><a href="https://2014.igem.org/Team:Technion-Israel/Judging#results">Results</a></li> |
| </ul> | | </ul> |
| </li> | | </li> |
Line 257: |
Line 268: |
| <div class="title" id="howitworks">How It works</div> | | <div class="title" id="howitworks">How It works</div> |
| <div id="highlights" class="container"> | | <div id="highlights" class="container"> |
- | <center> <h1>Neetd lots of editing</h1>
| + | <center> |
- | | + | <img src="https://static.igem.org/mediawiki/2014/3/3a/Technion-Israel-howworks1.jpg" height="800px"><br><br> |
| + | <img src="https://static.igem.org/mediawiki/2014/f/f4/Technion-Israel-howworks2.jpg"> |
| + | </center> |
| </div> | | </div> |
| </div> | | </div> |
Line 270: |
Line 283: |
| <p style="font-size: 1.2em;"><br>The Alpha System is the preliminary design we planned for a biosensor that can detect various materials at low concentrations.<br> | | <p style="font-size: 1.2em;"><br>The Alpha System is the preliminary design we planned for a biosensor that can detect various materials at low concentrations.<br> |
| The main goal of our design is to make the bio-sensor capable of detecting harmful substances at far lower concentrations than existing bio-sensors. To do this, we designed a system which produces a chain reaction resulting from the input of a single molecule. This system utilizes a Cell-to-cell communication channel called quorum sensing, to make it possible for a cell which sensed a single molecule of the material detected to “inform” the surrounding cells of the existence of this toxin, causing them to produce a signaling molecule, and then inform their neighbors and so on, creating a chain reaction.<br> | | The main goal of our design is to make the bio-sensor capable of detecting harmful substances at far lower concentrations than existing bio-sensors. To do this, we designed a system which produces a chain reaction resulting from the input of a single molecule. This system utilizes a Cell-to-cell communication channel called quorum sensing, to make it possible for a cell which sensed a single molecule of the material detected to “inform” the surrounding cells of the existence of this toxin, causing them to produce a signaling molecule, and then inform their neighbors and so on, creating a chain reaction.<br> |
- | Unlike other biosensors, our system is meant to be as versatile as possible- with a minor change at the genetic level it can detect molecule A instead of molecule B. That saves us the need to construct an entirely different detector for every dangerous material out there.<br> | + | Unlike other biosensors, our system is meant to be as versatile as possible- with a minor change at the genetic level it can detect molecule A instead of molecule B. That saves us the need to construct an entirely different detector for every dangerous material out there.<br><br> |
- | *Maybe a picture of a bun and a heavy metal frightened because of safie* <br>
| + | The alpha system consists of three gates.<br> |
- | The alpha system consists of three gates:<br> | + | |
- | *picture of a cell with the schemes of the three gates*<br>
| + | |
| Each gate plays an important role in the detection process inside the cell, but the system as a whole is also based on communication between bacteria via quorum sensing.<br> | | Each gate plays an important role in the detection process inside the cell, but the system as a whole is also based on communication between bacteria via quorum sensing.<br> |
| </p> | | </p> |
- | <h2><br><u>Gate 1</u> </h2><h1>Built and Biobricked</h1> | + | <h2><br><u>Gate 1</u> </h2><h1>Built and Biobricked <a href="http://parts.igem.org/Part:BBa_K1343000" target="_blank"><u>(BBa_K1343000)</u></a></h1> |
| <img src="https://static.igem.org/mediawiki/2014/f/fb/Technion-Israel-gate1.png"><br> | | <img src="https://static.igem.org/mediawiki/2014/f/fb/Technion-Israel-gate1.png"><br> |
- | <h2><br>The goal of the first gate is to produce the quorum sensing molecule, AHL, when a material of interest is present in the bacteria's environment. As a result, this part can be replaced by any bio-sensor which uses AHL production as its output.</h2> | + | <h2><br>The goal of the first gate is to produce the quorum sensing molecule, AHL, when a material of interest is present in the bacterias' environment. As a result, this part can be replaced by any bio-sensor which uses AHL production as its output.</h2> |
- | <p style="font-size: 1.2em;">The construct includes a changeable promoter for the detection of the material of interest. In the example above the promoter is Ptet which is repressed by tetR; when tetracycline or its analog ATC is present, tetR is removed<br> | + | <p style="font-size: 1.2em;">The construct includes a changeable promoter for the detection of the material of interest. In the example above the promoter is Ptet which is repressed by tetR; when tetracycline or its analog aTc is present, tetR is removed<br> |
| When the material is present it will get into the cell, attach to the promoter and the transcription of the LuxI gene will begin. LuxI gene encodes for an AHL synthase. AHL is a signal molecule that can diffuse freely into the cell and out.<br> | | When the material is present it will get into the cell, attach to the promoter and the transcription of the LuxI gene will begin. LuxI gene encodes for an AHL synthase. AHL is a signal molecule that can diffuse freely into the cell and out.<br> |
| The NheI restriction site was added to the construct so that the promoter activating the gate can be easily changed. EcoRI restriction site is found at the beginning of the prefix, and by a simple restriction reaction with the two enzymes we could take the promoter out and replace it with a different one. | | The NheI restriction site was added to the construct so that the promoter activating the gate can be easily changed. EcoRI restriction site is found at the beginning of the prefix, and by a simple restriction reaction with the two enzymes we could take the promoter out and replace it with a different one. |
Line 286: |
Line 297: |
| <b>But why do we want our bacteria to produce AHL molecules? How does it help us to see if a toxin or an allergen is present in our sample?</b><br> | | <b>But why do we want our bacteria to produce AHL molecules? How does it help us to see if a toxin or an allergen is present in our sample?</b><br> |
| Continue reading about gate 2 and 3 to find out</p></center> | | Continue reading about gate 2 and 3 to find out</p></center> |
- | <center><h2><br><u>Gate 2</u> </h2><h1>Built and Biobricked</h1> | + | <center><h2><br><u>Gate 2</u> </h2><h1>Built and Biobricked <a href="http://parts.igem.org/Part:BBa_K1343003" target="_blank"><u>(BBa_K1343003)</u></a></h1> |
| <img src="https://static.igem.org/mediawiki/2014/c/c5/Technion-Israel-gate2.png"><br> | | <img src="https://static.igem.org/mediawiki/2014/c/c5/Technion-Israel-gate2.png"><br> |
| <h2><br>The gate serves as a sensitivity tuner, allowing us to control on the timing of the measurement. When we want to start our measurement we just need to add IPTG to the bacteria solution.</h2> | | <h2><br>The gate serves as a sensitivity tuner, allowing us to control on the timing of the measurement. When we want to start our measurement we just need to add IPTG to the bacteria solution.</h2> |
- | <p style="font-size: 1.2em;">The gate consists of the Plac promoter and the LuxR gene. When IPTG is added to a sample containing our bacteria, LuxR gene is transcribed. LuxR is a transcriptioninal activator that binds directly to the AHL molecules, so that a LuxR-AHL complex is formed. | + | <p style="font-size: 1.2em;">The gate consists of the Plac promoter and the LuxR gene. When IPTG is added to a sample containing our bacteria, LuxR gene is transcribed. LuxR is a transcriptional activator that binds directly to the AHL molecules, so that a LuxR-AHL complex is formed. |
| </p> | | </p> |
| <p> | | <p> |
Line 298: |
Line 309: |
| <h2><br>Gate 3 enables us to see if our material of interest is present in a random sample by producing GFP and amplifying the signal.</h2> | | <h2><br>Gate 3 enables us to see if our material of interest is present in a random sample by producing GFP and amplifying the signal.</h2> |
| <p style="font-size: 1.2em;">This construct is the final part of our alpha system. <br> | | <p style="font-size: 1.2em;">This construct is the final part of our alpha system. <br> |
- | The promoter of the gate is the Plux promoter which undergoes activation when the complex LuxR-AHL dimer binds to it. If the promoter is activated we get the production of a reporter gene (GFP) and the LuxI gene.<br> | + | The promoter of the gate is the Plux promoter which undergoes activation when the complex LuxR-AHL binds to it. If the promoter is activated we get the production of a reporter gene (GFP) and the LuxI gene.<br> |
| As we mentioned in the section on gate 1, LuxI transcription results in AHL molecules.<br><br><br> | | As we mentioned in the section on gate 1, LuxI transcription results in AHL molecules.<br><br><br> |
| </p> | | </p> |
- | <h3 style="font-size: 1.5em; line-height:1.75em"><br>In conclusion, the Alpha System is a 3 gate construct that produces GFP when a substance is detected and signals the other cells around it to produce GFP as well:<br></h2> | + | <p style="font-size: 1.2em;">We experienced many difficulties in building this gate. Therefore we built an alternative Gate 2-Gate 3 construct: Pcat_luxR_Plux_mCherry_luxI<br><br></p> |
- | <p style="font-size: 1.2em;">*picture*<br><br></p> | + | <h3 style="font-size: 1.5em; line-height:1.75em"><br>In conclusion, the Alpha System is a 3 gate construct that produces GFP when a substance is detected and signals the other cells around it to produce GFP as well<br><br></h2> |
| + | <p style="font-size: 1.2em;"><img src="https://static.igem.org/mediawiki/2014/8/8a/Technion-Israel-alphastream.jpg"></p> |
| </center> | | </center> |
| | | |
Line 315: |
Line 327: |
| <center><h2 style="box-shadow:0px 0px 1px 1px rgba(0,0,0,0.25); border-radius:0.35em; font-weight:700; padding:1em; font-size:2em;">Beta System</h2> | | <center><h2 style="box-shadow:0px 0px 1px 1px rgba(0,0,0,0.25); border-radius:0.35em; font-weight:700; padding:1em; font-size:2em;">Beta System</h2> |
| <p style="line-height:1.75em;"> | | <p style="line-height:1.75em;"> |
- | According to the model <a href="https://2014.igem.org/Team:Technion-Israel/Modeling#whyfail">"Why Should it Fail"</a> of the Alpha System, we can see that it has some problems. We decided to test new methods to reduce the noise in our system. One idea was a new design – the Beta System, inspired by the noise reduction mechanism described by Goni-Moreno and Amos. (Goni-Moreno & Amos, 2012). | + | <img src="https://static.igem.org/mediawiki/2014/0/00/Technion-Israel-Beta_System.png" width="1100px"><br> |
| + | According to the model <a href="https://2014.igem.org/Team:Technion-Israel/Modeling#whyfail">"Why it Should Fail"</a> of the Alpha System, we can see that it has some problems. We decided to test new methods to reduce the noise in our system. One idea was a new design – the Beta System, inspired by the noise reduction mechanism described by Goni-Moreno and Amos. (Goni-Moreno & Amos, 2012). |
| We used a double repression Toggle Switch similar to that described by Gardner et al. (Gardner, Cantor, & Collins, 2000)), to filter the inputs of our system. This makes the cell-to-cell communication more accurate, while affording them an internal memory capacity.<br> | | We used a double repression Toggle Switch similar to that described by Gardner et al. (Gardner, Cantor, & Collins, 2000)), to filter the inputs of our system. This makes the cell-to-cell communication more accurate, while affording them an internal memory capacity.<br> |
| This system consists of three main circuits:<br> | | This system consists of three main circuits:<br> |
Line 324: |
Line 337: |
| | | |
| <h1 style="font-size: 1.2em;">Computation Circuit</h1> | | <h1 style="font-size: 1.2em;">Computation Circuit</h1> |
| + | <img src="https://static.igem.org/mediawiki/2014/a/aa/Technion-Israel-Computational_Circuit.png"><br> |
| <p style="line-height:1.75em;"> | | <p style="line-height:1.75em;"> |
| The Computation Circuit has been programmed to function as an OR gate:<br> | | The Computation Circuit has been programmed to function as an OR gate:<br> |
Line 348: |
Line 362: |
| <b>(1)</b> LuxR, a protein which binds to AHL (a "receiver").<br> | | <b>(1)</b> LuxR, a protein which binds to AHL (a "receiver").<br> |
| <b>(2)</b> A genetic gate which can produce large amounts of AHL (an "antenna").<br> | | <b>(2)</b> A genetic gate which can produce large amounts of AHL (an "antenna").<br> |
- | <img src="https://static.igem.org/mediawiki/2014/7/74/Technion-Israel-betaSC.png"><br> | + | <img src="https://static.igem.org/mediawiki/2014/7/74/Technion-Israel-betaSC.png"> |
- | <b>This circuit contains two parts:</b><br> | + | <b><br><br>This circuit contains two parts:</b><br> |
| The first part consists of the promoter Pcat, a constitutive promoter, which regulates LuxR expression in excess at all times. The LuxR protein can bind to AHL produced by neighboring cells, activating the Computational Circuit.<br> | | The first part consists of the promoter Pcat, a constitutive promoter, which regulates LuxR expression in excess at all times. The LuxR protein can bind to AHL produced by neighboring cells, activating the Computational Circuit.<br> |
| The second part consists of the promoter, PT7 RNA polymerase, which is controlled by the T7 polymerase synthesized by the Toggle Switch, and regulates the expression of LuxI – an enzyme that produces AHL. When the PT7 promoter is activated, it produces large amounts of AHL. This amplifies the signal produced by the toggle switch, before it is diffuses out through the lossy channel.<br> | | The second part consists of the promoter, PT7 RNA polymerase, which is controlled by the T7 polymerase synthesized by the Toggle Switch, and regulates the expression of LuxI – an enzyme that produces AHL. When the PT7 promoter is activated, it produces large amounts of AHL. This amplifies the signal produced by the toggle switch, before it is diffuses out through the lossy channel.<br> |
Line 374: |
Line 388: |
| To screen for the positive colony with the positive RNA splint and the functionality of LuxI, the detector strain assay will be done (the same screening method from gate 1)<br></p> | | To screen for the positive colony with the positive RNA splint and the functionality of LuxI, the detector strain assay will be done (the same screening method from gate 1)<br></p> |
| | | |
- | <h1>LuxI-Inspiration</h1> | + | <h1><br><br>LuxI-Inspiration</h1> |
| <p><b>RNA splint:</b> bridges between A protein RNA and B protein RNA. The splint enables the ligation of two RNA molecules. In order for the ligation of the 2 RNA molecules to occur a T4 RNA ligase is needed. T4 RNA Ligase is the enzyme from the phage that makes this ligation between two RNA molecules, it recognizes a specific site (this will be addressed later on). This is the preferable method.<br> | | <p><b>RNA splint:</b> bridges between A protein RNA and B protein RNA. The splint enables the ligation of two RNA molecules. In order for the ligation of the 2 RNA molecules to occur a T4 RNA ligase is needed. T4 RNA Ligase is the enzyme from the phage that makes this ligation between two RNA molecules, it recognizes a specific site (this will be addressed later on). This is the preferable method.<br> |
- | <b>The design using luxI:</b> | + | <b>The design using luxI:</b><br><br> |
| <img src="https://static.igem.org/mediawiki/2014/4/4b/Technion-Israel-RNALuxI.png"><br></p> | | <img src="https://static.igem.org/mediawiki/2014/4/4b/Technion-Israel-RNALuxI.png"><br></p> |
- | <h1>CM Resistance</h1> | + | <h1><br><br>CM Resistance</h1> |
| <p>RNA splint is an in-vitro method described for the ligation of 2 RNA molecules. (M.R. Stark, J.A. Pleiss, (2006)<br> | | <p>RNA splint is an in-vitro method described for the ligation of 2 RNA molecules. (M.R. Stark, J.A. Pleiss, (2006)<br> |
- | For a simple and robust screen CM split is preferred over the split of luxI<br> | + | For a simple and robust screen CM split is preferred over the split of luxI<br><br><br> |
| <img src="https://static.igem.org/mediawiki/2014/b/be/Technion-Israel-RNAwhole.png"></p> | | <img src="https://static.igem.org/mediawiki/2014/b/be/Technion-Israel-RNAwhole.png"></p> |
- | <h1>Some background about the components needed for the described system</h1> | + | <h1><br><br>Some background about the components needed for the described system</h1> |
- | <p> | + | <p style="text-align:left;"> |
| • Role of T4 Ligase in nature: to repair tRNA damage during the invasion of the bacteriophage (maybe cause of different anti codon usage in the phage) (“Thus, reprocessing could be yet another T4 device to adapt the translation apparatus to post-infection codon usage”) (Amitsur et al., 1987)(C. Kiong Ho, Li Kai Wang 2004)<br> | | • Role of T4 Ligase in nature: to repair tRNA damage during the invasion of the bacteriophage (maybe cause of different anti codon usage in the phage) (“Thus, reprocessing could be yet another T4 device to adapt the translation apparatus to post-infection codon usage”) (Amitsur et al., 1987)(C. Kiong Ho, Li Kai Wang 2004)<br> |
| • Problem: Ribosome will get stuck because of the double strand RNA<br> | | • Problem: Ribosome will get stuck because of the double strand RNA<br> |
Line 399: |
Line 413: |
| <img> | | <img> |
| </p> | | </p> |
| + | <p>For extended information follow the <a href="https://static.igem.org/mediawiki/2014/c/c5/Technion-Israel-RNA_Splint2.pdf" target="_blank">link</a></p> |
| </center> | | </center> |
| <hr> | | <hr> |
- | <p> | + | <p style="text-align:left; font-size:1.0em;"> |
- | | + | 1. M.R. Stark, J.A. Pleiss, (2006), RNA<br> |
| + | 2. Amitsur et al., 1987<br> |
| + | 3. C. Kiong Ho, Li Kai Wang 2004<br> |
| + | 4. NCBI, Gene ID: 948290, < http://www.ncbi.nlm.nih.gov/gene/948290>, updated on 12-Oct-2014<br> |
| + | 5. NCBI, GenBank: AF158101.6, <http://www.ncbi.nlm.nih.gov/nuccore/29345244?from=136340&to=137464&sat=4&sat_key=40961403&report=fasta>17.10.14<br> |
| + | 6. E. Paredes et al. / Methods 54 (2011)<br> |
| + | 7. Christian Hammann, Marcos De La Pena, (2012), The ubiquitous hammerhead ribozyme. RNA<br> |
| + | 8. William G. Scott (RNA Technologies 2010)<br> |
| + | 9. Jim Nolan, < http://www.tulane.edu/~biochem/nolan/lectures/rna/ham.htm> 17.10.14<br> |
| </p> | | </p> |
| | | |
Line 455: |
Line 478: |
| <h1><br>Azobenzene aggregate Nano-Particles (NPs)</h1> | | <h1><br>Azobenzene aggregate Nano-Particles (NPs)</h1> |
| <p style="font-size:1.1em;">We established our iGEM azobenzene biological conceptions based on the Nano-word. We collaborated with Weizmann institute to test azobenzene molecules. We have seen that azobenzene can aggregate various NPs like iron oxide, gold and big particles like silica (see reference and TEM figures), and based on this behaviors we established our vision to use azobenzene as a photo-induced molecule to aggregate bacteria forming a synthetic biofilm.</p> | | <p style="font-size:1.1em;">We established our iGEM azobenzene biological conceptions based on the Nano-word. We collaborated with Weizmann institute to test azobenzene molecules. We have seen that azobenzene can aggregate various NPs like iron oxide, gold and big particles like silica (see reference and TEM figures), and based on this behaviors we established our vision to use azobenzene as a photo-induced molecule to aggregate bacteria forming a synthetic biofilm.</p> |
| + | |
| + | <p><br><p>For full azobenzene protocol follow the <a href="https://static.igem.org/mediawiki/2014/0/0e/Technion-Israel-Azobenzene.pdf" target="_blank">link</a></p> |
| + | <p><br><p>For extended information follow the <a href="https://static.igem.org/mediawiki/2014/f/fa/Technion-Israel-Simple_azo.pdf" target="_blank">link</a></p> |
| </center> | | </center> |
| <hr> | | <hr> |
Line 481: |
Line 507: |
| <h1 style="font-size:1.5em;">Introduction</h1> | | <h1 style="font-size:1.5em;">Introduction</h1> |
| <p style="font-size:1.1em; line-height:1.75em;"> | | <p style="font-size:1.1em; line-height:1.75em;"> |
- | Some substances that we want to detect cannot diffuse into the cell or they do not activate promoters. To test for these substances we want utilize the E.coli’s EnvZ/ompR two-component signaling system (Forst & Roberts, 1994) by creating chimera proteins that detect the desired substance.<br> | + | Some substances that we want to detect cannot diffuse into the cell or they do not activate promoters. To test for these substances we want utilize the modularity of E.coli’s EnvZ/ompR two-component signaling system by creating chimera proteins that detect the desired substance.<br> |
| <img src="https://static.igem.org/mediawiki/2014/7/71/Technion-Israel-hk.png"><br> | | <img src="https://static.igem.org/mediawiki/2014/7/71/Technion-Israel-hk.png"><br> |
| <b>Figure 1: How a chimaera protein would use the EnvZ/ompR two-component signalling system to trigger our system</b><br><br> | | <b>Figure 1: How a chimaera protein would use the EnvZ/ompR two-component signalling system to trigger our system</b><br><br> |
Line 488: |
Line 514: |
| <h1 style="font-size:1.5em;"><br>TaZ Construct</h1> | | <h1 style="font-size:1.5em;"><br>TaZ Construct</h1> |
| <p style="font-size:1.1em; line-height:1.75em;"><b>Completed and Biobricked</b></p> | | <p style="font-size:1.1em; line-height:1.75em;"><b>Completed and Biobricked</b></p> |
- | <p style="font-size:1.1em; line-height:1.75em;">We found the receptor, tar-envZ biobrick (Bba_C0082) which contains the coding sequence for Taz. In order to use the Taz we added the promoter Pcat (Bba_I14033), an RBS (Bba_B0034) and double terminator (Bba_B0015). Thus we created the Taz construct biobrick BBa_K1343016. Click on the link to continue reading about our TaZ experimentation.</p> | + | <p style="font-size:1.1em; line-height:1.75em;">We found the receptor, tar-envZ biobrick (Bba_C0082) which contains the coding sequence for Taz. In order to use the Taz we added the promoter Pcat (Bba_I14033), an RBS (Bba_B0034) and double terminator (Bba_B0015). Thus we created the Taz construct biobrick <a href="http://parts.igem.org/Part:BBa_K1343003" target="_blank">BBa_K1343016</a>. Click on the link to continue reading about our <a href="https://2014.igem.org/Team:Technion-Israel/Experiments#taz">TaZ experimentation</a>.</p> |
| <p>Two different E. coli strains were tested:<br> | | <p>Two different E. coli strains were tested:<br> |
| (1)BW25113 - parent strain for the Keio collection<br> | | (1)BW25113 - parent strain for the Keio collection<br> |
Line 494: |
Line 520: |
| (These strains were given to us by Lior Zelcbuch, Elad Hertz from Ron Milo’s lab at the Weizmann Institute of Science)<br><br> | | (These strains were given to us by Lior Zelcbuch, Elad Hertz from Ron Milo’s lab at the Weizmann Institute of Science)<br><br> |
| The goal was to compare the expression in the wild type and in the ΔEnvZ mutant. We expected that in the wild type the expression will be greater than in the mutant since the natural EnvZ/ompR system will cause expression of the RFP.</p> | | The goal was to compare the expression in the wild type and in the ΔEnvZ mutant. We expected that in the wild type the expression will be greater than in the mutant since the natural EnvZ/ompR system will cause expression of the RFP.</p> |
| + | |
| + | <p><br><p>For extended information follow the <a href="https://static.igem.org/mediawiki/2014/7/7d/Technion-Israel-Histidine_Kinase_-_long_for_wiki.pdf" target="_blank">link</a></p> |
| </center> | | </center> |
| <hr> | | <hr> |
Line 508: |
Line 536: |
| <center><h1 style="font-size:1.5em;">Gene Deletion</h1></center> | | <center><h1 style="font-size:1.5em;">Gene Deletion</h1></center> |
| <center><p><b>Failed to delete ackA-pta genes</b></p><center> | | <center><p><b>Failed to delete ackA-pta genes</b></p><center> |
| + | <center> |
| <p> | | <p> |
- | | + | To be able to utilize the EnvZ/OmpR two-component-signaling system for our project, we need to ensure that the natural EnvZ/OmpR system does not interfere, introducing noise to the system, giving a false signal.<br> |
| + | <b>How did we change make sure the natural EnvZ/OmpR system doesn’t disrupt our system?</b><br> |
| + | We needed to use a strain of E. coli that has an EnvZ deletion (ΔEnvZ). The Keio Collection (Baba, Ara, Hasegawa, Takai, & Okumura, 2006) contains a strain of E. coli with exactly this deletion (strain JW3367-3).<br>Great! So we are all set right?<br> |
| + | Wrong.<br> |
| + | OmpR can be phosphorylated not only by the histidine kinase EnvZ but also by an acetyl phosphate dependent mechanism. (Heyde, Laloi, & Portalier, 2000) This would introduce a low level of noise into the system. Since our detector needs to be precise to be able to detect low concentrations, even a low level of noise would be problematic.<br> |
| + | <b>What did we do about this?</b><br> |
| + | We needed a bacteria which not only had the EnvZ knockout, but also had the genes for the Phosphate acetyl transferase (pta) and Acetate kinase (ackA) enzymes which are involved in the acetyl phosphate pathway (Heyde, Laloi, & Portalier, 2000)<br> |
| + | Unfortunately we had some trouble finding a strain with the deletions we needed so we decided to make one ourselves.<br> |
| + | <b>How did we do this?</b><br> |
| + | Lior Zelcbuch and Elad Hertz from Ron Milo’s lab at the Weizmann Institute of Science suggested we take the E. coli strain JW3367-3 (ΔEnvZ) from the Keio Collection and use the Lamda Red technique to delete the genes for ackA and pta.<br> |
| + | Since the genes for ackA and pta are adjacent to each other on the E. coli chromosome, we decided to delete them in one go.<br> |
| + | With Lior Z. and Elad’s guidance and help from Edna Kler from the Technion, we attempted to delete the genes.<br> |
| + | We tried several times, once we even went all the way to the Weizmann Institute in Rehovot where Lior Z., Elad and Sagit Yahav helped us. But to no avail! We just couldn’t manage to knock out the genes! <br> |
| + | </p> |
| + | <p><br><p>For extended information follow the <a href="https://static.igem.org/mediawiki/2014/1/1e/Gene_Deletion_-_wiki.pdf" target="_blank">link</a></p> |
| + | <hr> |
| + | </center> |
| + | <p style="text-align:left;"> |
| + | 1. Baba, T., Ara, T., Hasegawa, M., Takai, Y., & Okumura, Y. (2006). Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Molecular Systems Biology, 1-11. |
| + | 2. Datsenko, K. A., & Wanner, B. L. (2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences of the United States of America, 97(12), 6640-6645. |
| + | 3. Forst, S. A., & Roberts, D. L. (1994). Signal transduction by the EnvZ-OmpR phosphotransfer system in bacteria. Research in Microbiology, 145, 363-373. |
| + | 4. Heyde, M., Laloi, P., & Portalier, R. (2000). Involvement of Carbon Source and Acetyl Phosphate in the External-pH-Dependent Expression of Porin Genes in Escherichia coli. Journal of Bacteriology, 182(1), 198-202. |
| + | 5. Kenney, L. (n.d.). Welcome to the Kenney Lab. Retrieved from University of Illinois at Chicago: http://www.uic.edu/labs/kenneyl/) |
| </p> | | </p> |
- |
| |
| | | |
| </div> | | </div> |
Line 517: |
Line 567: |
| | | |
| <div id="footer-wrapper" class="wrapper"> | | <div id="footer-wrapper" class="wrapper"> |
- | <div class="title" id="newmethod">New Method</div> | + | <div class="title" id="newmethod">New Standard</div> |
| <div id="footer" class="container"> | | <div id="footer" class="container"> |
| <header class="style1info"> | | <header class="style1info"> |
Line 740: |
Line 790: |
| <section class="highlight"> | | <section class="highlight"> |
| <!--<a href="#" class="image featured"><img src="images/pic02.jpg" alt="" /></a>--> | | <!--<a href="#" class="image featured"><img src="images/pic02.jpg" alt="" /></a>--> |
- | <h3><a href="#">Gene Deletion & Histidine Kinase</a></h3> | + | <h3><a>Gene Deletion & Histidine Kinase</a></h3> |
| <p>This is Rebecca's and Karen's lab notebook for gene deletion attempts and TaZ biobrick building.</p> | | <p>This is Rebecca's and Karen's lab notebook for gene deletion attempts and TaZ biobrick building.</p> |
| <ul class="actions"> | | <ul class="actions"> |
Line 749: |
Line 799: |
| <div class="4u"> | | <div class="4u"> |
| <section class="highlight"> | | <section class="highlight"> |
- | <h3><a href="#">Alpha System</a></h3> | + | <h3><a>Alpha System</a></h3> |
| <p>These are a few notebooks arranged together of all Alpha System gate constructs. Lab work done by Tal, Rica, Ronen, Shira, Noa and Alex</p> | | <p>These are a few notebooks arranged together of all Alpha System gate constructs. Lab work done by Tal, Rica, Ronen, Shira, Noa and Alex</p> |
| <ul class="actions"> | | <ul class="actions"> |
Line 759: |
Line 809: |
| <section class="highlight"> | | <section class="highlight"> |
| | | |
- | <h3><a href="#">Azobenzene-Robot</a></h3> | + | <h3><a>Azobenzene-Robot</a></h3> |
| <p>This is the lab notebook of all the experiments done with azobenzene, by Ittai, Yair, Faris and the Robot.<br></p> | | <p>This is the lab notebook of all the experiments done with azobenzene, by Ittai, Yair, Faris and the Robot.<br></p> |
| <ul class="actions"> | | <ul class="actions"> |
- | <li><a href="#" class="button style1">Learn More</a></li> | + | <li><a href="https://static.igem.org/mediawiki/2014/1/1c/Technion-Israel-robot.pdf" class="button style1">Learn More</a></li> |
| </ul> | | </ul> |
| </section> | | </section> |
Line 771: |
Line 821: |
| <section class="highlight"> | | <section class="highlight"> |
| <center> | | <center> |
- | <h3><a href="#">RNA Splint</a></h3> | + | <h3><a>RNA Splint</a></h3> |
| <p>This is Ronen's lab notebook for the RNA splint</p> | | <p>This is Ronen's lab notebook for the RNA splint</p> |
| <ul class="actions"> | | <ul class="actions"> |
Line 782: |
Line 832: |
| <section class="highlight"> | | <section class="highlight"> |
| <center> | | <center> |
- | <h3><a href="#">Bata System</a></h3> | + | <h3><a>Beta System</a></h3> |
| <p>This the Beta System lab notebook of Rica, Tal and Ittai</p> | | <p>This the Beta System lab notebook of Rica, Tal and Ittai</p> |
| <ul class="actions"> | | <ul class="actions"> |
Line 869: |
Line 919: |
| </ul> | | </ul> |
| </div> | | </div> |
| + | |
| + | |
| + | </body> |
| + | |
| | | |
| </body> | | </body> |
| </html> | | </html> |