Team:Tsinghua-A

From 2014.igem.org

(Difference between revisions)
 
(117 intermediate revisions not shown)
Line 1: Line 1:
-
[https://2014.igem.org/wiki/index.php?title=Team:Tsinghua-A&action=edit]
+
{{Team:Tsinghua-A/Style}}
 +
{{Team:Tsinghua-A/Killbanner}}
 +
{{Team:Tsinghua-A/Menubar}}
-
<h1>Background</h1>
+
<html>
 +
<body>
-
<p>Transactivator-Like Effectors (TALEs) are a technology that once revolutionized the way researchers manipulate DNA with exceptional site specificity. TALEs are proteins secreted by Xanthomonas bacteria and they recognize DNA sequences through a central repeat domain consisting of a variable number of 34 amino acid repeats. There appears to be a one-to-one correspondence between the identity of two critical amino acids in each repeat and each DNA base in the target sequence.</p>
+
  <!-- Carousel -->
 +
  <div id="header" class="carousel slide animated fadeIn">
 +
    <div class="carousel-inner">
 +
     
 +
      <!--Item One-->
 +
      <div class="item one active">
 +
        <div class="container animated fadeInUp">
 +
          <div  class="carousel-caption">
 +
            <h1>Welcome to Tsinghua-A Team Wiki</h1>
 +
            <h2> To TALE a new world.   <a href="https://2014.igem.org/Team:Tsinghua-A/Project"><i class="icon-chevron-right"></i> See Project</a></h2>
 +
          </div>
 +
        </div>
 +
      </div>
 +
     
 +
      <!--Item Two-->
 +
      <div class="item two">
 +
        <div class="container">
 +
     
 +
          <div class="carousel-caption">
 +
            <h1>Welcome to Tsinghua-A Team Wiki</h1>
 +
            <h2> Coding to reveal the code.   <a href="https://2014.igem.org/Team:Tsinghua-A/Modeling"><i class="icon-chevron-right"></i> See Modeling</a> </h2>
 +
          </div>
 +
        </div>
 +
      </div>
 +
     
 +
      <!--Item Three-->
 +
      <div class="item three">
 +
        <div class="container">
 +
       
 +
          <div class="carousel-caption">
 +
            <h1>Welcome to Tsinghua-A Team Wiki</h1>
 +
            <h2> Practice humanity with technology. <a href="https://2014.igem.org/Team:Tsinghua-A/HumanPractice"><i class="icon-chevron-right"></i> See Human Practice</a> </h2>
 +
          </div>
 +
        </div>
 +
      </div>
 +
     
 +
    </div>
 +
    <a class="left carousel-control hidden-phone" href="#header" data-slide="prev"></a>
 +
    <a class="right carousel-control hidden-phone" href="#header" data-slide="next"></a>
 +
  </div><!-- /.carousel -->
 +
 
-
<h1>Assembly</h1>
 
-
<p>The TALE assembly strategy uses the Golden Gate cloning method, which is based on the ability of type IIS enzymes to cleave outside of their recognition site. When type IIS recognition sites are placed to the far 5’ and 3’ end of any DNA fragment in inverse orientation, they are removed in the cleavage process, allowing two DNA fragments flanked by compatible sequence overhangs, termed fusion sites, to be ligated seamlessly. Since type IIS fusion sites can be designed to have different sequences, directional assembly of multiple DNA fragments is feasible. Using this strategy, DNA fragments can be assembled from undigested input plasmids in a one-pot reaction with high efficiency.
 
-
We chose the native TALE AvrBs3 as a scaffold for customized assembly of TALE constructs. The central DNA binding domain of AvrBs3 is formed by 17.5 tandemly arranged 34 amino acid repeats, with the last half repeat showing similarity to only the first 20 amino acids of a full repeat. To reduce the risk of recombination events between the 17.5 highly homologous repeat sequences, we codon-optimized avrBs3 applying the codon usage.
 
-
In a single Golden Gate cloning reaction, cloning efficiency is significantly reduced for assembly of 17 repeat modules. Therefore, we split the assembly in two successive steps. In the first cloning step, 10 repeats are assembled in one vector. The preassembly vectors confer SpecR and encode a lacZ-α fragment for blue/white selection. On both sides of the lacZ-α fragment a type IIS recognition sequence - BsaI - is positioned. Similarly, 11~17 repeats and NG-last-repeat are respectively ligated and inserted into another vector. After preassembly of the 10 and 7 and last repeats using BsaI, the intermediate blocks are released via Esp3I and cloned into the final assembly vector (modified pTAL1). Modified pTAL1 confers AmpR, and allows plasmid replication in E.coli. The vector pTAL1 also contains all elements of the final TALE expression construct, except the repeat modules.</p>
 
-
<h1>Modeling</h1>
+
<section id="message">
 +
    <div class="container">
 +
      <div class="row-fluid">
 +
        <div class="span12 text-center">
 +
        <h2> Introduction </h2>
 +
          <h3>Transactivator-Like Effectors (TALEs) are a technology that once revolutionized the way researchers manipulate DNA with exceptional site specificity.Though it works well in eukaryotic organisms, it is not available in prokaryotic organisms. We come up with the idea that the long repeating sequence of the TALEs coding sequence leads to it. In our project, we attempt to construct a marvelous TALEs system which can efficiently work in prokaryotic organisms. By optimizing the TALEs coding sequence with modeling methods and testing it by Golden Gate Assembly and Report System, we hope we can have a handle tool for gene editing in prokaryotic organisms.
-
<p>In modeling part, genetic algorithm is applied to TALE sequence optimization. We exploit amino acid degeneracy and alternate the nucleotides to reduce the repetition rate of DNA bases of the DNA sequence of TALE. Then the optimized TALE will be tested by biological experiments. We divide our algorithm into four parts. First, we alternate a random point of natural DNA sequence of TALE. It is the same as gene mutation. Thousands of mutational sequences form a population and we simulate the process of reproduction in computer. The population will be changed by exchange of parts of DNA. Then each sequence will be estimated by dynamic programming and given a score. The high scored sequences have higher possibility to survive and the lower ones are more likely to be obsoleted. After more than 200 generations, an optimized population will be created. And we choose a certain number of the sequences to be tested in the next biological test.</p>
+
<h3>
-
<h1>Report System</h1>
+
        </div>
-
<p>We construct a report system so as to test the reliability and efficiency of our ‘Telling TALE’. In this section, we test the TALE’s DNA binding ability and report it with a common report gene ‘RFP’. We attempt to put the target of TALE’s DNA binding target sequence inside the expression cassette of report gene and binding TALE can disrupt the express of report gene. We use iGEM standard parts to build our report system.</p>
 
-
<h1>Reference</h1>
+
      </div>
 +
    </div>
 +
  </section>
-
<p>Weber E, Gruetzner R, Werner S, Engler C, Marillonnet S (2011) Assembly of Designer TAL Effectors by Golden Gate Cloning. PLoS ONE 6(5): e19722. doi:10.1371/journal.pone.0019722</p>
+
 
 +
<section>
 +
<div class="span12 text-centre">
 +
 
 +
<img src="https://static.igem.org/mediawiki/2014/0/08/Tsinghua-A_Wishtobethefinal.jpg">
 +
 
 +
</img>
 +
</div>
 +
 
 +
</section>
 +
 
 +
  <!--Services Section-->
 +
  <section id="services">
 +
    <div class="container">
 +
      <div class="row-fluid">
 +
       
 +
        <!--Service Section One-->
 +
        <div class="span3 text-center service-box">
 +
          <a href="https://2014.igem.org/Team:Tsinghua-A/Project">
 +
            <img class="team-thumb img-circle" src="https://static.igem.org/mediawiki/2014/5/57/Tsinghua-A-project.jpg" alt="">
 +
            <h2>Project</h2>
 +
            <p>Background, hypothesis and workflow of designer TALE. </p>
 +
          </a>
 +
        </div>
 +
       
 +
        <!--Service Section Two-->
 +
        <div class="span3 text-center service-box">
 +
          <a href="https://2014.igem.org/Team:Tsinghua-A/Modeling">
 +
          <img class="team-thumb img-circle" src="https://static.igem.org/mediawiki/2014/2/24/Tsinghua-A-modeling3.jpg" alt="">
 +
            <h2>Modeling</h2>
 +
            <p>Optimization of TALE sequence and simulation of the gene circuit. </p>
 +
          </a>
 +
        </div>
 +
       
 +
        <!--Service Section Three-->
 +
        <div class="span3 text-center service-box">
 +
          <a href="https://2014.igem.org/Team:Tsinghua-A/HumanPractice">
 +
            <img class="team-thumb img-circle" src="https://static.igem.org/mediawiki/2014/c/c9/Tsinghua-A_HP.jpg" alt="">
 +
            <h2>Human Practice</h2>
 +
            <p>Lectures, seminar, questionnaires and raising ethic problems. </p>
 +
          </a>
 +
        </div>
 +
       
 +
        <!--Service Section Three-->
 +
        <div class="span3 text-center service-box">
 +
          <a href="https://2014.igem.org/Team:Tsinghua-A/Team">
 +
            <img class="team-thumb img-circle" src="https://static.igem.org/mediawiki/2014/8/8e/Tsinghua-A_team.jpg" alt="">
 +
            <h2>Team</h2>
 +
            <p>Department of Automatics, Life Science and Medical School. </p>
 +
          </a>
 +
        </div>
 +
 
 +
      </div>
 +
    </div>
 +
  </section>
 +
 
 +
<section id="team">
 +
  <div class="image-break"> </div>
 +
 
 +
  <div class="container">
 +
     
 +
      <div class="row-fluid">
 +
        <div class="span12">
 +
  <h2> Team </h2>
 +
      <img src="https://static.igem.org/mediawiki/2014/7/70/Tsinghua-A_team.png" alt="Title">
 +
 
 +
                   
 +
        </div>
 +
      </div>
 +
         
 +
 +
    </div>
 +
  </section>
 +
 
 +
 
 +
 
 +
<!--Clients Section-->
 +
  <section id="Acknoledgements">
 +
  <div class="image-break"> </div>
 +
 
 +
  <div class="container">
 +
     
 +
      <div class="row-fluid">
 +
        <div class="span12">
 +
          <h2> Acknowledgements </h2>
 +
                    <img src="https://static.igem.org/mediawiki/2014/4/45/Tsinghua-A_acc.png"  alt="Title">
 +
        </div>
 +
      </div>
 +
         
 +
 +
    </div>
 +
  </section>
 +
 
 +
 
 +
 
 +
 
 +
 +
 
 +
 
 +
 
 +
</body>
 +
</html>
 +
 
 +
{{Team:Tsinghua-A/Footer}}
 +
{{Team:Tsinghua-A/Script}}

Latest revision as of 03:01, 18 October 2014

Introduction

Transactivator-Like Effectors (TALEs) are a technology that once revolutionized the way researchers manipulate DNA with exceptional site specificity.Though it works well in eukaryotic organisms, it is not available in prokaryotic organisms. We come up with the idea that the long repeating sequence of the TALEs coding sequence leads to it. In our project, we attempt to construct a marvelous TALEs system which can efficiently work in prokaryotic organisms. By optimizing the TALEs coding sequence with modeling methods and testing it by Golden Gate Assembly and Report System, we hope we can have a handle tool for gene editing in prokaryotic organisms.

Team

Title

Acknowledgements

Title