Team:Penn/Magnetism

From 2014.igem.org

(Difference between revisions)
 
(28 intermediate revisions not shown)
Line 1: Line 1:
 +
{{Team:Penn/CSS}}
<html>
<html>
<head>
<head>
-
<link rel="stylesheet" type="text/css" media="screen, projection" href="https://98c43ce680a0761e7c3ad3c1d7ae34f6de6db886.googledrive.com/host/0B9QyOqpKYA2gdGV2aGFRMWh4aXM/style.css" />
+
<title>University of Pennsylvania iGEM</title>
<title>University of Pennsylvania iGEM</title>
<link href='http://fonts.googleapis.com/css?family=Open+Sans' rel='stylesheet' type='text/css'>
<link href='http://fonts.googleapis.com/css?family=Open+Sans' rel='stylesheet' type='text/css'>
Line 10: Line 11:
<body>
<body>
-
<!--AAAAAA-->
+
 
-
<ul id="nav">
+
-
<a href="https://2014.igem.org/Team:Penn"><li>Home</li></a>
+
-
  <li>Project
+
-
  <ul>
+
-
      <a href="https://2014.igem.org/Team:Penn/Overview"> <li>Overview</li> </a>
+
-
    <a href="https://2014.igem.org/Team:Penn/Magnetism"> <li>Magnetism</li> </a>
+
-
    <a href="https://2014.igem.org/Team:Penn/Microbio"> <li>Microbiology</li> </a>
+
-
    <a href="https://2014.igem.org/Team:Penn/Synbio"> <li>SynBio in AMB-1</li> </a>
+
-
    <a href="https://2014.igem.org/Team:Penn/CdTolerance"> <li>Cadmium Tolerance</li> </a>
+
-
  </ul>
+
-
  </li>
+
-
 
+
-
  <li>Human Practices
+
-
    <ul>
+
-
      <a href="https://2014.igem.org/Team:Penn/Specsheet"><li>Spec Sheet</li></a>
+
-
    <a href="https://2014.igem.org/Team:Penn/Outreach"><li>Outreach</li></a>
+
-
    <a href="https://2014.igem.org/Team:Penn/Biomeme"><li>Biomeme</li></a>
+
-
  </ul>
+
-
</li>
+
-
  <li>Notebook
+
-
  <ul>
+
-
      <a href="https://2014.igem.org/Team:Penn/Notebook"><li>Timeline</li></a>
+
-
      <a href="https://2014.igem.org/Team:Penn/Safety"><li>Safety</li></a>
+
-
    <a href="https://2014.igem.org/Team:Penn/Protocol"><li>Protocols</li></a>
+
-
    <a href="https://2014.igem.org/Team:Penn/Supplement"><li>Supplementary Materials</li></a>
+
-
    <a href="https://2014.igem.org/Team:Penn/Resources"><li>Resources</li></a>
+
-
  </ul>
+
-
  </li>
+
-
  <li>Team
+
-
  <ul>
+
-
      <a href="https://2014.igem.org/Team:Penn/Team"><li>About Us</li></a>
+
-
    <a href="https://2014.igem.org/Team:Penn/Sponsors"><li>Sponsors</li></a>
+
-
  </ul>
+
-
  </li>
+
-
</ul>
+
-
<!---AAA--->
+
-
+
-
+
-
<div style = "background: url('https://static.igem.org/mediawiki/2014/2/24/JaneText.png'); position: inherited; height:350px; background-size: 80%; background-repeat: no-repeat; background-position:center top;">
+
-
</div>
+
<div id="redbox">
<div id="redbox">
-
<div style = "text-align: center; font-size: 24px;">Magnetic Properties of AMB-1</div></br>
+
<div style = "text-align: center;"><img width="300px" src="https://static.igem.org/mediawiki/2014/c/c5/Magnetic-props-header.png"></div><br>
<div id="textbox">
<div id="textbox">
-
<h3 style= "text-align: left">Relationship Between OD600 and T2 for AMB-1</h3>
+
-
<p style = "text-align: left; text-indent:0px">We attempted to explore the magnetic properties of AMB-1 as further understanding would prove AMB-1’s value as a chassis in bioremediation and other fields. We hoped to quantify the magnetic strength of AMB-1 using spin-spin relaxation time (T2 time) and relate it to the cell concentration (OD600). To do so, we used a magnetic NMR machine (the minispec mq60, Bruker) to measure the T2 decay time of cell samples. A longer T2 time indicated fewer magnetic particles, and therefore weaker magnetic properties. Since the relationship between the inverse of T2 and OD was linear, this data supports that each cell has roughly the same number of magnetosomes, and that a greater number of these magnetosomes can be correlated with stronger magnetic properties.
+
<p style = "text-align: left; text-indent:0px"> AMB-1 is most useful for synthetic biology because of its rare capacity to align with magnetic fields.<sup>[9]</sup> We attempted to explore the magnetic properties of AMB-1 as further understanding would prove AMB-1’s value as a chassis in bioremediation and other fields. </p>
-
</p>
+
-
<p style = "text-align: left;text-indent:0px">AMB-1 was grown under anaerobic conditions to saturation. The culture was then serially diluted into ½, ¼ and 1/8 of the initial concentration. The OD600 and T2 time of all dilution samples was measured and then recorded in the table below (Table 4.1). One 1 mL of the cell sample was used for each measurement. MSGM media that does not contain bacteria was used as a blank for this experiment (the OD600 for the blank is 0).
+
<h3 style= "text-align: left">Relationship Between OD<sub>600</sub> and T<sub>2</sub> for AMB-1</h3>
 +
<p style = "text-align: left; text-indent:0px">We hoped to quantify the magnetic strength of AMB-1 using spin-spin relaxation time (T<sub>2</sub> time) and relate it to the cell concentration (OD<sub>600</sub>). To do so, we used a magnetic NMR machine (the minispec mq60, Bruker) to measure the T<sub>2</sub> decay time of cell samples (Fig. 1). A longer T2 time indicated fewer magnetic particles, and therefore weaker magnetic properties.
</p>
</p>
 +
 +
 +
<h3 style= "text-align: left; font-size: 18px;">Figure 1:</h3>
<div id = "figureBox" style = "margin-left: auto; margin-right:auto; width: 700px; text-align:center;"> <img style = "width: 700px;" src = "https://static.igem.org/mediawiki/2014/d/dc/Magnetism_and_AMB-1.png"></div>
<div id = "figureBox" style = "margin-left: auto; margin-right:auto; width: 700px; text-align:center;"> <img style = "width: 700px;" src = "https://static.igem.org/mediawiki/2014/d/dc/Magnetism_and_AMB-1.png"></div>
 +
 +
<h3 style= "text-align: left; font-size: 18px;">Results:</h3>
 +
<p style = "text-align: left; text-indent:0px">Since the relationship between the inverse of T<sub>2</sub> and OD was linear, this data supports that each cell has roughly the same number of magnetosomes, and that a greater number of these magnetosomes can be correlated with stronger magnetic properties. The cell concentration and magnetic strength showed a linear relationship <b>(1/T<sub>2</sub>) =(0.002x + 0.0016)</b> with an R<sup>2</sup> = 0.704.
 +
 +
 +
<br><br>
 +
 +
</p>
 +
<p>The following video of AMB-1 was taken under 1000X magnification.</p>
<div id = "PhotoBox">
<div id = "PhotoBox">
-
<iframe id="center_video" align="middle" src="//www.youtube.com/embed/c_IVwOvEYVI" frameborder="0" allowfullscreen></iframe></br>
+
<video width="500" controls>
 +
<source src="https://static.igem.org/mediawiki/2014/8/85/Penn_2014_amb-1.mp4" type="video/mp4" />
 +
</video>
</div>
</div>
<br>
<br>
-
<h3 style= "text-align: left; font-size: 18px;"><u>Achievement:</h3></u>
+
 
-
<p style = "text-align: left; text-indent:0px">The cell concentration and magnetic strength showed a linear relationship (1/T2) =(0.0032x + 0.0015) with an R^2 value that was very close to one.  
+
</div>
-
</p>
+
<div style="position:absolute;right:5px;bottom:50px">
 +
<a href="https://2014.igem.org/Team:Penn/Microbio"><img width="80px" src="https://static.igem.org/mediawiki/2014/thumb/archive/c/ca/20141018025849%21Syn-bio-amb-1-flow-arrow.png/120px-Syn-bio-amb-1-flow-arrow.png">;
</div>
</div>
</body>
</body>
</html>
</html>

Latest revision as of 03:01, 18 October 2014

University of Pennsylvania iGEM

AMB-1 is most useful for synthetic biology because of its rare capacity to align with magnetic fields.[9] We attempted to explore the magnetic properties of AMB-1 as further understanding would prove AMB-1’s value as a chassis in bioremediation and other fields.

Relationship Between OD600 and T2 for AMB-1

We hoped to quantify the magnetic strength of AMB-1 using spin-spin relaxation time (T2 time) and relate it to the cell concentration (OD600). To do so, we used a magnetic NMR machine (the minispec mq60, Bruker) to measure the T2 decay time of cell samples (Fig. 1). A longer T2 time indicated fewer magnetic particles, and therefore weaker magnetic properties.

Figure 1:

Results:

Since the relationship between the inverse of T2 and OD was linear, this data supports that each cell has roughly the same number of magnetosomes, and that a greater number of these magnetosomes can be correlated with stronger magnetic properties. The cell concentration and magnetic strength showed a linear relationship (1/T2) =(0.002x + 0.0016) with an R2 = 0.704.

The following video of AMB-1 was taken under 1000X magnification.


;