Team:StanfordBrownSpelman/Building The Drone
From 2014.igem.org
(Difference between revisions)
(17 intermediate revisions not shown) | |||
Line 47: | Line 47: | ||
<div id="header" class="small-8 small-centered columns"> | <div id="header" class="small-8 small-centered columns"> | ||
<h3><center><a href="https://2014.igem.org/Team:StanfordBrownSpelman/Building_The_Drone">Prototyping a Biological UAV</a></h3> | <h3><center><a href="https://2014.igem.org/Team:StanfordBrownSpelman/Building_The_Drone">Prototyping a Biological UAV</a></h3> | ||
- | <div class="boxedmenu"><h7><center><a href="#" id=" | + | <div class="boxedmenu"><h7><center><a href="#" id="data">Materials & Designs</a> ● <a href="#" id="methods">Downloads</a> ● <a href="#" id="links">References</a> ● <a href="#" id="intro">Futures</a></h7></div> |
- | <h6 | + | <h6> |
Our team modeled, prototyped, and collaborated with <a href="http://www.ecovativedesign.com">Ecovative Design</a> to grow a mycelium-based chassis for our biological drone. Below you'll find process photos, part designs, and links to open source model files for downloading and additively manufacturing your own biological or bio-inspired unmanned aerial vehicle. Finally, you can see images of the biological, biodegradable UAV that we built and flew! | Our team modeled, prototyped, and collaborated with <a href="http://www.ecovativedesign.com">Ecovative Design</a> to grow a mycelium-based chassis for our biological drone. Below you'll find process photos, part designs, and links to open source model files for downloading and additively manufacturing your own biological or bio-inspired unmanned aerial vehicle. Finally, you can see images of the biological, biodegradable UAV that we built and flew! | ||
</h6> | </h6> | ||
Line 70: | Line 70: | ||
<li><img src="https://static.igem.org/mediawiki/2014/6/66/SBSiGEM2014BTD2.JPG"></li><h6>Experimenting with cellulose material shape.</h6><br> | <li><img src="https://static.igem.org/mediawiki/2014/6/66/SBSiGEM2014BTD2.JPG"></li><h6>Experimenting with cellulose material shape.</h6><br> | ||
<li><img src="https://static.igem.org/mediawiki/2014/e/e6/SBSiGEM2014BTD4.JPG"></li><h6>Layering cellulose to create thicker leather, see here at the back of the hood.</h6> | <li><img src="https://static.igem.org/mediawiki/2014/e/e6/SBSiGEM2014BTD4.JPG"></li><h6>Layering cellulose to create thicker leather, see here at the back of the hood.</h6> | ||
+ | <li><img src="https://static.igem.org/mediawiki/2014/d/d3/SBSiGEM2014BTD5.jpg"></li><h6>Mycelium drone chassis, modeled and 3D-designed by our team, produced by Ecovative.</h6> | ||
</ul> | </ul> | ||
</div> | </div> | ||
Line 75: | Line 76: | ||
<ul class="small-block-grid-1 no-bullet"> | <ul class="small-block-grid-1 no-bullet"> | ||
<br><br> | <br><br> | ||
+ | <li><img src="https://static.igem.org/mediawiki/2014/5/57/SBSiGEM2014_Cellulose_Circuit.jpg"></li><h6>Our team collaborated with a silicon valley start up <a href="http://agic.cc" target="_blank">AgiC Inc.</a> to print circuits onto our cellulose-based biomaterials in order to prototype how fully biodegradable circuitry might function on a biological UAV. See our <a href="https://2014.igem.org/Team:StanfordBrownSpelman/Cellulose_Acetate">Biomaterials</a> page for details on the conductivity of this circuitry.</h6><br> | ||
<li><img src="https://static.igem.org/mediawiki/2014/c/c5/SBSiGEM2014BTD3.jpg"></li><h6>Variable thickness elements and experimental fragment attachment methods.</h6><br> | <li><img src="https://static.igem.org/mediawiki/2014/c/c5/SBSiGEM2014BTD3.jpg"></li><h6>Variable thickness elements and experimental fragment attachment methods.</h6><br> | ||
- | <li><img src="https://static.igem.org/mediawiki/2014/c/c5/SBSiGEM2014BTD8.JPG"></li><h6>Spreading a cellulose sheet out to dry.</h6 | + | <li><img src="https://static.igem.org/mediawiki/2014/c/c5/SBSiGEM2014BTD8.JPG"></li><h6>Spreading a cellulose sheet out to dry.</h6> |
- | + | ||
</ul> | </ul> | ||
</div> | </div> | ||
Line 100: | Line 102: | ||
</div></div> | </div></div> | ||
<div class="small-7 small-centered columns"><br><center><img src="https://static.igem.org/mediawiki/2014/3/38/SBSiGEM2014_Cellulose_Screw.jpg"><br> | <div class="small-7 small-centered columns"><br><center><img src="https://static.igem.org/mediawiki/2014/3/38/SBSiGEM2014_Cellulose_Screw.jpg"><br> | ||
- | <h6><center>A spiral rope made by | + | <h6><center>A spiral rope made by weaving together several cellulose sheets and dehydrating them.</center></h6> |
</div> | </div> | ||
<div class="small-7 small-centered columns"><br><center><img src="https://static.igem.org/mediawiki/2014/d/d2/SBSiGEM2014_Cellulose_Leather.jpg"><br> | <div class="small-7 small-centered columns"><br><center><img src="https://static.igem.org/mediawiki/2014/d/d2/SBSiGEM2014_Cellulose_Leather.jpg"><br> | ||
Line 114: | Line 116: | ||
<div class="row"> | <div class="row"> | ||
<div id="subheader" class="small-8 small-centered columns"><h6> | <div id="subheader" class="small-8 small-centered columns"><h6> | ||
- | Realizing that cellulose acetate is tough but thin, our team was in need of a building material that was durable and lightweight. So, we reached out to | + | Realizing that cellulose acetate is tough but thin, our team was in need of a building material that was durable and lightweight. So, we reached out to Ecovative Design, a pioneering fungal-mycelium-based biomaterial company, to prototype a mycelium form that could serve as the chassis of our vehicle. Ecovative shipped us mycelium samples (pictured below), that we skinned in bacterial cellulose.</h6> |
</div></div> | </div></div> | ||
<div class="small-7 small-centered columns"><br><center><img src="https://static.igem.org/mediawiki/2014/5/57/SBSiGEM2014_Mycelium_Sample2.jpg"><br> | <div class="small-7 small-centered columns"><br><center><img src="https://static.igem.org/mediawiki/2014/5/57/SBSiGEM2014_Mycelium_Sample2.jpg"><br> | ||
Line 125: | Line 127: | ||
<div class="row"> | <div class="row"> | ||
<div id="subheader" class="small-8 small-centered columns"><h6> | <div id="subheader" class="small-8 small-centered columns"><h6> | ||
- | Thanks to | + | Thanks to Ecovative, we were able to construct a prototype biological unmanned aerial vehicle!<br><br>But we didn't stop there. Our team was enthusiastic about drone design and so we developed concept UAV designs meant to inspire future scientists and designers to think outside the box about how a future, partially living vehicle might look. Pseudo-natural and pseudo-industrial, our drone design references the traditional biological architecture of birds while embracing industrial additive manufacturability.<br><br>All 3D printable files for this concept drone are available in the downloads section. Images of our work follow:</h6> |
</div></div> | </div></div> | ||
Line 137: | Line 139: | ||
<div class="row"> | <div class="row"> | ||
<div id="subheader" class="small-8 small-centered columns"> | <div id="subheader" class="small-8 small-centered columns"> | ||
- | <h6> | + | <h6></h6> |
</div> | </div> | ||
Line 186: | Line 188: | ||
<div class="row"> | <div class="row"> | ||
- | <div class="small-3 small-centered columns cells5"> | + | <div id="int" class="small-3 small-centered columns cells5"> |
</div> | </div> | ||
</div> | </div> | ||
Line 196: | Line 198: | ||
<h5><center>Drone Futures</h5> | <h5><center>Drone Futures</h5> | ||
<h6> | <h6> | ||
- | Here is a collection of speculative work that stimulated our team to think about synthetic biology, the future, and the role of personal unmanned aerial vehicles or biological devices in an evolving world of DIY craft, government surveillance, and channelled creativity. | + | Here is a collection of drone-related sites and speculative work that stimulated our team to think about synthetic biology, the future, and the role of personal unmanned aerial vehicles or biological devices in an evolving world of DIY craft, government surveillance, and channelled creativity. |
<div class="sub5"><a href="http://www.fabrica.it/projects/drone">● Frabrica — <i>Drone</i>, speculative fictions in the age of the drone</a></div> | <div class="sub5"><a href="http://www.fabrica.it/projects/drone">● Frabrica — <i>Drone</i>, speculative fictions in the age of the drone</a></div> | ||
<div class="sub5"><a href="http://www.dronesurvivalguide.org">● Drone Survival Guide — a poster series highlighting the uneasy relationship between the public and drones</a></div> | <div class="sub5"><a href="http://www.dronesurvivalguide.org">● Drone Survival Guide — a poster series highlighting the uneasy relationship between the public and drones</a></div> | ||
- | |||
<div class="sub5"><a href="http://diydrones.com">● DIY Drones — a growing online community of makers committed to building unmanned aircraft</a></div> | <div class="sub5"><a href="http://diydrones.com">● DIY Drones — a growing online community of makers committed to building unmanned aircraft</a></div> | ||
+ | <div class="sub5"><a href="http://www.dezeen.com/2014/04/29/drone-shadows-graphics-james-bridle-designs-of-the-year-2014/">● Drone shadows, a visual reminder of constant surveillance</a></div> | ||
+ | <div class="sub5"><a href="http://www.huffingtonpost.com/2013/04/03/anti-drone-hoodie-adam-harvey-surveillance_n_3007064.html#slide=2295806">● Anti-Drone hoodie</a></div> | ||
</h6> | </h6> | ||
</div> | </div> | ||
Line 238: | Line 241: | ||
<div id="closing" class="small-8 small-centered columns"> | <div id="closing" class="small-8 small-centered columns"> | ||
<h6> | <h6> | ||
- | Built atop Foundation. Content & Development © Stanford–Brown–Spelman iGEM 2014. | + | Built atop Foundation. Content & Development © Stanford–Brown–Spelman iGEM 2014. |
</h6> | </h6> | ||
</div> | </div> |
Latest revision as of 03:00, 18 October 2014