Team:SCAU-China/Omega-PCR

From 2014.igem.org

(Difference between revisions)
(Prototype team page)
 
(39 intermediate revisions not shown)
Line 1: Line 1:
{{CSS/Main}}
{{CSS/Main}}
-
 
+
{{CSS/hxstyle}}
 +
{{:Team:SCAU-China/hxmenu}}
<html>
<html>
-
<style type="text/css">
+
<script>
-
#groupparts {text-align: center; margin-left: auto; margin-right: auto;}
+
$(function(){
-
</style>
+
$(".hx-menu li:eq(3)").addClass("active");
-
<!--main content -->
+
})
-
<table width="70%" align="center">
+
</script>
-
 
+
<div class="r hx-main">
-
 
+
           
-
<!--welcome box -->
+
            <div class="hx-box hx-boxd hx-omega">
-
<tr>
+
                <div class="ti"><strong>Omega-PCR</strong></div>
-
<td style="border:1px solid black;" colspan="3" align="center" height="150px" bgColor=#FF404B>
+
                    <div class="con">
-
<h1 >WELCOME TO iGEM 2014! </h1>
+
                    <h3>Introduction</h3>
-
<p>Your team has been approved and you are ready to start the iGEM season!
+
                        <p><b>Ω-PCR</b> is a simple, flexible and low-cost molecular manipulation strategy developed by Letian Chen in 2012 <sup>[1]</sup>.</p>
-
<br>On this page you can document your project, introduce your team members, document your progress <br> and share your iGEM experience with the rest of the world! </p>
+
<p>It is a sequence modification strategy based on an overlap extension site-directed mutagenesis technique, which enables multiple types of sequence modification including precise insertion, deletion and substitution in any positions of a circular plasmid. In our project, we utilized this method to insert certain gene, promoter sequences into existing parts and substitute subpart of an existing constructs. It can be performed in two steps. The product of the first-step PCR, which amplifies the insertional or substitutional sequences, plays the role of omega-primers of the second-step PCR and forms a Ω-like secondary structure in the mega-primers, which achieve insertion or substitution of target sequence in a new construct. Thus, we have adopted this efficient and seamless method to construct our parts.</p>
-
<br>
+
                        <h4>Advantages</h4>
-
<p style="color:#E7E7E7"> <a href="https://2014.igem.org/wiki/index.php?title=Team:SCAU-China/Parts&action=edit"style="color:#FFFFFF"> Click here  to edit this page!</a> </p>
+
                        <p>1. Robust--enables multiple types of precise sequence manipulation of existed standard BioBricks in purification-free manner. <br />
-
</td>
+
2. Seamless--beneficial for wide applications for protein engineering, gene function analysis and in vitro gene splicing.<br />
-
</tr>
+
3. Low cost--each reaction costs less than $0.1.<br />
-
 
+
4. Timesaving-–all processes perform based on PCR reaction, normally 1 biobrick 1 day.<br />
-
<tr> <td colspan="3"  height="5px"> </td></tr>
+
-
<!-- end welcome box -->
+
-
<tr>
+
-
 
+
-
<!--navigation menu -->
+
-
<td align="center" colspan="3">
+
-
 
+
-
<table  width="100%">
+
-
<tr heigth="15px"></tr>
+
-
<tr heigth="75px">
+
-
 
+
-
 
+
-
<td style="border:1px solid black;" align="center" height ="45px" onMouseOver="this.bgColor='#d3d3d3'" onMouseOut="this.bgColor='#e7e7e7'" bgColor=#e7e7e7> 
+
-
<a href="https://2014.igem.org/Team:SCAU-China"style="color:#000000">Home </a> </td>
+
-
 
+
-
<td style="border:1px solid black;" align="center" height ="45px" onMouseOver="this.bgColor='#d3d3d3'" onMouseOut="this.bgColor='#e7e7e7'" bgColor=#e7e7e7>  
+
-
<a href="https://2014.igem.org/Team:SCAU-China/Team"style="color:#000000"> Team </a> </td>
+
-
 
+
-
<td style="border:1px solid black;" align="center"  height ="45px"  onMouseOver="this.bgColor='#d3d3d3'" onMouseOut="this.bgColor='#e7e7e7'" bgColor=#e7e7e7>  
+
-
<a href="https://igem.org/Team.cgi?year=2014&team_name=SCAU-China"style="color:#000000"> Official Team Profile </a></td>
+
-
 
+
-
<td style="border:1px solid black" align="center"  height ="45px" onMouseOver="this.bgColor='#d3d3d3'" onMouseOut="this.bgColor='#e7e7e7'" bgColor=#e7e7e7> 
+
-
<a href="https://2014.igem.org/Team:SCAU-China/Project"style="color:#000000"> Project</a></td>
+
-
 
+
-
<td style="border:1px solid black;" align="center"  height ="45px" onMouseOver="this.bgColor='#d3d3d3'" onMouseOut="this.bgColor='#e7e7e7'" bgColor=#e7e7e7>
+
-
<a href="https://2014.igem.org/Team:SCAU-China/Parts"style="color:#000000"> Parts</a></td>
+
-
 
+
-
<td style="border:1px solid black;" align="center" height ="45px" onMouseOver="this.bgColor='#d3d3d3'" onMouseOut="this.bgColor='#e7e7e7'" bgColor=#e7e7e7>  
+
-
<a href="https://2014.igem.org/Team:SCAU-China/Modeling"style="color:#000000"> Modeling</a></td>
+
-
 
+
-
<td style="border:1px solid black;" align="center" height ="45px" onMouseOver="this.bgColor='#d3d3d3'" onMouseOut="this.bgColor='#e7e7e7'" bgColor=#e7e7e7> 
+
-
<a href="https://2014.igem.org/Team:SCAU-China/Notebook"style="color:#000000"> Notebook</a></td>
+
-
 
+
-
<td style="border:1px solid black;" align="center"  height ="45px" onMouseOver="this.bgColor='#d3d3d3'" onMouseOut="this.bgColor='#e7e7e7'" bgColor=#e7e7e7>
+
-
<a href="https://2014.igem.org/Team:SCAU-China/Safety"style=" color:#000000"> Safety </a></td>
+
-
 
+
-
<td style="border:1px solid black;" align="center"  height ="45px" onMouseOver="this.bgColor='#d3d3d3'" onMouseOut="this.bgColor='#e7e7e7'" bgColor=#e7e7e7>
+
-
<a href="https://2014.igem.org/Team:SCAU-China/Attributions"style="color:#000000"> Attributions </a></td>
+
-
 
+
-
 
+
-
<td align ="center"> <a href="https://2014.igem.org/Main_Page"> <img src="https://static.igem.org/mediawiki/igem.org/6/60/Igemlogo_300px.png" width="55px"></a> </td>
+
-
</tr>
+
-
</table>
+
-
 
+
-
<!--end navigation menu -->
+
-
</tr>
+
-
 
+
-
 
+
-
</tr>
+
-
+
-
 
+
-
 
+
-
 
+
-
 
+
-
</td>
+
-
 
+
-
<tr> <td colspan="3"  height="15px"> </td></tr>
+
-
<tr><td bgColor="#e7e7e7" colspan="3" height="1px"> </tr>
+
-
<tr> <td colspan="3"  height="5px"> </td></tr>
+
-
 
+
-
 
+
-
<!--Parts Submitted to the Registry  -->
+
-
<tr><td > <h3> Parts Submitted to the Registry </h3></td>
+
-
<td ></td >
+
-
<td > <h3>What information do I need to start putting my parts on the Registry? </h3></td>
+
-
</tr>
+
-
<tr>
+
-
<td width="45%"  valign="top">
+
-
<p>
+
-
An important aspect of the iGEM competition is the use and creation of standard  biological parts. Each team will make new parts during iGEM and will submit them to the <a href="http://partsregistry.org"> Registry of Standard Biological Parts</a>. The iGEM software provides an easy way to present the parts your team has created. The "groupparts" tag will generate a table with all of the parts that your team adds to your team sandbox. 
+
-
 
+
-
<p>
+
-
<strong>Note that if you want to document a part you need to document it on the <a href="http://partsregistry.org Registry"> Registry</a>, not on your team wiki.</strong> Future teams and other users and are much more likely to find parts on the Registry than on your team wiki.
+
</p>
</p>
-
 
+
<h4>Disadvantages</h4>
-
<p>
+
                        <p>1. Capacity varies on the quality of DNA polymerase.<br />
-
Remember that the goal of proper part documentation is to describe and define a part, so that it can be used without a need to refer to the primary literature. Registry users in future years should be able to read your documentation and be able to use the part successfully. Also, you should provide proper references to acknowledge previous authors and to provide for users who wish to know more.
+
2. Necessary treatments for avoiding false positive clones.
</p>
</p>
-
 
+
<h3>How does Ω-PCR work?</h3>
-
 
+
                        <p>Ω-PCR can be applied in sequence insertion, deletion and substitution of an existed plasmid, and the principles of different applications are similar. Here we describe the insertion type. </p>
-
 
+
                        <p><b>1st Ω-PCR—— Create insertion sequence with two ends of overlap terminals.</b></p>
-
<h3>When should you put parts into the Registry?</h3>
+
                        <p><img src="https://static.igem.org/mediawiki/2014/c/c2/Hx-omega_1.jpg" width="620" /></p>
-
 
+
                        <p><img src="https://static.igem.org/mediawiki/2014/0/03/Hx-omega_2.jpg" width="620" /></p>
-
<p>
+
                        <p>If we want to insert the target gene (<i>nadE</i> gene from <i>E.coli MG1655</i>)sequence at the insertion site(between BBa_K608002 and the standard BioBrick suffix) shown above, we need to design the pair of primers which are able to amplify the open reading frame of <i>nadE</i> gene with an overlapping sequence at their 5’terminals from the genomic DNA of <i>E.coli MG1655</i>. In this way, the amplification product can extent and contains two short overlap sequences on the edge of the insertion site.
-
As soon as possible! We encourage teams to start completing documentation for their parts on the Registry as soon as you have it available. The sooner you put up your parts, the better recall you will have of all details surrounding your parts. Remember you don't need to send us the DNA to create an entry for a part on the Registry. However, you must send us the sample/DNA before the Jamboree. Only parts for which you have sent us samples/DNA are eligible for awards and medal requirements.  
+
After treatment by exonuclease I, the single strand primers are digested, minimizing the side effects in 2nd Ω-PCR.
</p>
</p>
-
</td>
+
<p><b>2nd Ω-PCR——Amplify the full length vector with‘omega primers’</b></p>
-
 
+
                        <p><img src="https://static.igem.org/mediawiki/2014/d/db/Hx-omega_3.jpg" width="620" /></p>
-
<td > </td>
+
<p>In the second PCR, the insertion sequence, amplified from the 1st Ω-PCR, serve as‘omega-primers', with the overlap sequence specifically binding flank of the insertion site on template plasmid pSB1C3-BBa_K608002. The target gene sequence between two overlap sequences, however, is shaped into an Ω-letter-liked secondary structure. Under the catalysis of high-fidelity DNA polymerase, the whole plasmid will then be amplified with the target gene sequence inserted. Although there are still nicks in the 2nd Ω-PCR product, they will be repaired after transformed into <i>E.coli</i> competent cells.</p>
-
<td width="45%" valign="top">
+
                        <h3>Protocol</h3>
-
 
+
                        <p><b>Step1: Design primers</b></p>
-
<p>
+
                        <p><b>A.For insertion Omega PCR</b></p>
-
The information needed to initially create a part on the Registry is:
+
                        <p><img src="https://static.igem.org/mediawiki/2014/f/fc/Hx-omega_4.jpg" width="620" /></p>
-
</p>
+
                        <p>If you want to insert sequence A at site 1, the primers can be designed as the graph shown above, the length of the overlap sequence is more than 20 bps. </p>
-
<ol>
+
                        <p><b>B.For substitution Omega PCR</b></p>
-
 
+
                        <p><img src="https://static.igem.org/mediawiki/2014/d/d4/Hx-omega_5.jpg" width="620" /></p>
-
<li>Part Name</li>
+
                        <p>If you want to substitute sequence B with the gene of interest sequence A between site 1 and site 2, design the pair of primers as the graph shown above.</p>
-
<li>Part type</li>
+
                        <p><b>C.For deletion Omega PCR</b></p>
-
<li>Creator</li>
+
                        <p><img src="https://static.igem.org/mediawiki/2014/1/15/Hx-omega_6.jpg" width="620" /></p>
-
<li>Sequence</li>
+
                        <p>If you want to delete sequence B between site 1 and site 2, design primers as the graph shown above.</p>
-
<li>Short Description (60 characters on what the DNA does)</li>
+
                        <p><b>Step2: 1st Ω-PCR </b></p>
-
<li>Long Description (Longer description of what the DNA does)</li>
+
                        <p>As the amplification reaction require high fidelity and elongation capability, we use KOD FX ( TOYOBO CO., LTD. Life Science Department OSAKA JAPAN ) as the PCR enzyme.</p>
-
<li>Design considerations</li>
+
                        <p><b>1.Reaction mixture</b></p>
-
</ol>
+
                        <table cellpadding="0" cellspacing="0" border="0" class="hx-table1">
-
 
+
                        <tr>
-
<p>
+
                            <th>&nbsp;</th>
-
We encourage you to put up <em>much more</em> information as you gather it over the summer. If you have images, plots, characterization data and other information, please also put it up on the part page. Check out part <a href="http://parts.igem.org/Part:BBa_K404003">BBa_K404003</a> for an excellent example of a highly characterized part.  
+
                                <th>For 1 reaction</th>
-
</p>
+
                                <th>Final concentration</th>
-
 
+
                            </tr>
-
<p>
+
                            <tr>
-
You can add parts to the Registry at our <a href="http://parts.igem.org/Add_a_Part_to_the_Registry"> Add a Part to the Registry</a> link.
+
                            <td>2x PCR buffer for KOD FX</td>
-
</p>
+
                                <td>10 μl</td>
-
</td>
+
                                <td>1 ×</td>
-
</tr>
+
                            </tr>
-
 
+
                            <tr>
-
 
+
                            <td>2mM dNTPs</td>
-
<tr> <td colspan="3" height="15px"> </td></tr>
+
                                <td>4 μl</td>
-
 
+
                                <td>0.4 mM each</td>
-
<tr><td colspan="3" > <h3> Parts Table</h3></td></tr>
+
                            </tr>
-
 
+
                            <tr>
-
 
+
                            <td>10μM Primer #1</td>
-
<tr><td width="45%" colspan="3" valign="top">
+
                                <td>0.4</td>
-
Any parts your team has created will appear in this table below:</td></tr>
+
                                <td>0.2 μM</td>
-
 
+
                            </tr>
-
</table>
+
                            <tr>
 +
                            <td>10μM Primer #2</td>
 +
                                <td>0.4</td>
 +
                                <td>0.2 μM</td>
 +
                            </tr>
 +
                            <tr>
 +
                            <td>Template DNA</td>
 +
                                <td>≧ 1 μl</td>
 +
                                <td>Genomic DNA ~200 ng / 50μl<br />
 +
                                Plasmid DNA ~50 ng / 50μl<br />
 +
                                cDNA (from ~200 ng RNA) / 50μl
 +
                                </td>
 +
                            </tr>
 +
                            <tr>
 +
                            <td>KOD FX (1.0U/μl)</td>
 +
                                <td>0.4 μl</td>
 +
                                <td>1.0 U / 50 μl</td>
 +
                            </tr>
 +
                            <tr>
 +
                            <td>Autoclaved, distilled water</td>
 +
                                <td>up to 20 μl</td>
 +
                                <td>&nbsp;</td>
 +
                            </tr>
 +
                        </table>
 +
                        <p><b>2.PCR cycle conditions</b></p>
 +
                        <table cellpadding="0" cellspacing="0" border="0" class="hx-table2">
 +
                        <tr>
 +
                            <th>Step</th>
 +
                                <th>Temp</th>
 +
                                <th>Time</th>
 +
                            </tr>
 +
                            <tr>
 +
                            <td>1:Predenature</td>
 +
                                <td>94 °C</td>
 +
                                <td>4 min</td>
 +
                            </tr>
 +
                            <tr>
 +
                            <td>2:Denature</td>
 +
                                <td>98 °C</td>
 +
                                <td>15 s</td>
 +
                            </tr>
 +
                            <tr>
 +
                            <td>3:Annealing</td>
 +
                                <td>(Tm-5)°C</td>
 +
                                <td>30 s</td>
 +
                            </tr>
 +
                            <tr>
 +
                            <td>4:Extension</td>
 +
                                <td>68 °C</td>
 +
                                <td>1min/kb DNA</td>
 +
                            </tr>
 +
                            <tr>
 +
                            <td>5:Go To step 2</td>
 +
                                <td>/</td>
 +
                                <td>35 cycles</td>
 +
                            </tr>
 +
                            <tr>
 +
                            <td>6:Final Extension</td>
 +
                                <td>68 °C</td>
 +
                                <td>10 min</td>
 +
                            </tr>
 +
                            <tr>
 +
                            <td>7:Storage</td>
 +
                                <td>4 °C</td>
 +
                                <td>∞</td>
 +
                            </tr>
 +
                        </table>
 +
                        <p><b>Step3: Exonuclease I digestion</b></p>
 +
                        <p>To eliminate the side effect of primers in 1st Ω-PCR to the next step, we use exonuclease I to digest the single strand primers. </p>
 +
                        <p><b>1.Reaction mixture</b></p>
 +
                        <table cellpadding="0" cellspacing="0" border="0" class="hx-table3">
 +
                        <tr>
 +
                            <td>10X Exonuclease I Reaction Buffer</td>
 +
                                <td>1 μl</td>
 +
                            </tr>
 +
                            <tr>
 +
                            <td>Exonuclease I</td>
 +
                                <td>5-10 U</td>
 +
                            </tr>
 +
                            <tr>
 +
                            <td>1st Ω-PCR product</td>
 +
                                <td>8 μl</td>
 +
                            </tr>
 +
                            <tr>
 +
                            <td>Distilled water</td>
 +
                                <td>up to 10 μl</td>
 +
                            </tr>
 +
                        </table>
 +
                        <b>2.Reaction condition</b>
 +
                        <p>Incubate at 37 ℃ for 30 min</p>
 +
                        <p><b>Step4: 2nd Ω-PCR</b></p>
 +
                        <p><b>1.Reaction mixture</b></p>
 +
                        <table cellpadding="0" cellspacing="0" border="0" class="hx-table4">
 +
                        <tr>
 +
                            <th>&nbsp;</th>
 +
                                <th>For 1 reaction</th>
 +
                                <th>Final concentration</th>
 +
                            </tr>
 +
                            <tr>
 +
                            <td>2 x PCR buffer for KOD FX</td>
 +
                                <td>10 μl</td>
 +
                                <td>1×</td>
 +
                            </tr>
 +
                            <tr>
 +
                            <td>2mM dNTPs</td>
 +
                                <td>4 μl</td>
 +
                                <td>0.4 mM each</td>
 +
                            </tr>
 +
                            <tr>
 +
                            <td>1st Ω-PCR product</td>
 +
                                <td>≥1 μl</td>
 +
                                <td>50~400 ng</td>
 +
                            </tr>
 +
                            <tr>
 +
                            <td>Template plasmid</td>
 +
                                <td>≥ 1 μl</td>
 +
                                <td>5~100 ng</td>
 +
                            </tr>
 +
                            <tr>
 +
                            <td>KOD FX (1.0 U/μl)</td>
 +
                                <td>0.4 μl</td>
 +
                                <td>1.0 U / 50 μl</td>
 +
                            </tr>
 +
                            <tr>
 +
                            <td>Autoclaved, distilled water</td>
 +
                                <td>up to 20 μl</td>
 +
                                <td>&nbsp;</td>
 +
                            </tr>
 +
                        </table>
 +
                        <p><b>2.PCR cycle conditions</b></p>
 +
                        <p><img src="https://static.igem.org/mediawiki/2014/5/55/Hx-omega_7.jpg" width="620" /></p>
 +
                        <p><b>Step5: Transformation</b><br />The 2nd Ω-PCR products are digested by DpnI to remove template plasmid before transformation, avoiding the excess of negative clones.</p>
 +
                        <h4>Reference</h4>
 +
                        <p>[1] Chen L, Wang F, Wang X, Liu YG. Robust one-tube Ω-PCR strategy accelerates precise sequence modification of plasmids for functional genomics. Plant Cell Physiology. 2013, 54: 634-642</p>
 +
                        <p></p>
 +
                    </div>
 +
                </div>
 +
               
 +
            </div>
 +
        </div>
 +
       
 +
    </div>
 +
</div>
</html>
</html>
-
 
-
<groupparts>iGEM013 SCAU-China</groupparts>
 

Latest revision as of 02:25, 18 October 2014

Omega-PCR

Introduction

Ω-PCR is a simple, flexible and low-cost molecular manipulation strategy developed by Letian Chen in 2012 [1].

It is a sequence modification strategy based on an overlap extension site-directed mutagenesis technique, which enables multiple types of sequence modification including precise insertion, deletion and substitution in any positions of a circular plasmid. In our project, we utilized this method to insert certain gene, promoter sequences into existing parts and substitute subpart of an existing constructs. It can be performed in two steps. The product of the first-step PCR, which amplifies the insertional or substitutional sequences, plays the role of omega-primers of the second-step PCR and forms a Ω-like secondary structure in the mega-primers, which achieve insertion or substitution of target sequence in a new construct. Thus, we have adopted this efficient and seamless method to construct our parts.

Advantages

1. Robust--enables multiple types of precise sequence manipulation of existed standard BioBricks in purification-free manner.
2. Seamless--beneficial for wide applications for protein engineering, gene function analysis and in vitro gene splicing.
3. Low cost--each reaction costs less than $0.1.
4. Timesaving-–all processes perform based on PCR reaction, normally 1 biobrick 1 day.

Disadvantages

1. Capacity varies on the quality of DNA polymerase.
2. Necessary treatments for avoiding false positive clones.

How does Ω-PCR work?

Ω-PCR can be applied in sequence insertion, deletion and substitution of an existed plasmid, and the principles of different applications are similar. Here we describe the insertion type.

1st Ω-PCR—— Create insertion sequence with two ends of overlap terminals.

If we want to insert the target gene (nadE gene from E.coli MG1655)sequence at the insertion site(between BBa_K608002 and the standard BioBrick suffix) shown above, we need to design the pair of primers which are able to amplify the open reading frame of nadE gene with an overlapping sequence at their 5’terminals from the genomic DNA of E.coli MG1655. In this way, the amplification product can extent and contains two short overlap sequences on the edge of the insertion site. After treatment by exonuclease I, the single strand primers are digested, minimizing the side effects in 2nd Ω-PCR.

2nd Ω-PCR——Amplify the full length vector with‘omega primers’

In the second PCR, the insertion sequence, amplified from the 1st Ω-PCR, serve as‘omega-primers', with the overlap sequence specifically binding flank of the insertion site on template plasmid pSB1C3-BBa_K608002. The target gene sequence between two overlap sequences, however, is shaped into an Ω-letter-liked secondary structure. Under the catalysis of high-fidelity DNA polymerase, the whole plasmid will then be amplified with the target gene sequence inserted. Although there are still nicks in the 2nd Ω-PCR product, they will be repaired after transformed into E.coli competent cells.

Protocol

Step1: Design primers

A.For insertion Omega PCR

If you want to insert sequence A at site 1, the primers can be designed as the graph shown above, the length of the overlap sequence is more than 20 bps.

B.For substitution Omega PCR

If you want to substitute sequence B with the gene of interest sequence A between site 1 and site 2, design the pair of primers as the graph shown above.

C.For deletion Omega PCR

If you want to delete sequence B between site 1 and site 2, design primers as the graph shown above.

Step2: 1st Ω-PCR

As the amplification reaction require high fidelity and elongation capability, we use KOD FX ( TOYOBO CO., LTD. Life Science Department OSAKA JAPAN ) as the PCR enzyme.

1.Reaction mixture

  For 1 reaction Final concentration
2x PCR buffer for KOD FX 10 μl 1 ×
2mM dNTPs 4 μl 0.4 mM each
10μM Primer #1 0.4 0.2 μM
10μM Primer #2 0.4 0.2 μM
Template DNA ≧ 1 μl Genomic DNA ~200 ng / 50μl
Plasmid DNA ~50 ng / 50μl
cDNA (from ~200 ng RNA) / 50μl
KOD FX (1.0U/μl) 0.4 μl 1.0 U / 50 μl
Autoclaved, distilled water up to 20 μl  

2.PCR cycle conditions

Step Temp Time
1:Predenature 94 °C 4 min
2:Denature 98 °C 15 s
3:Annealing (Tm-5)°C 30 s
4:Extension 68 °C 1min/kb DNA
5:Go To step 2 / 35 cycles
6:Final Extension 68 °C 10 min
7:Storage 4 °C

Step3: Exonuclease I digestion

To eliminate the side effect of primers in 1st Ω-PCR to the next step, we use exonuclease I to digest the single strand primers.

1.Reaction mixture

10X Exonuclease I Reaction Buffer 1 μl
Exonuclease I 5-10 U
1st Ω-PCR product 8 μl
Distilled water up to 10 μl
2.Reaction condition

Incubate at 37 ℃ for 30 min

Step4: 2nd Ω-PCR

1.Reaction mixture

  For 1 reaction Final concentration
2 x PCR buffer for KOD FX 10 μl
2mM dNTPs 4 μl 0.4 mM each
1st Ω-PCR product ≥1 μl 50~400 ng
Template plasmid ≥ 1 μl 5~100 ng
KOD FX (1.0 U/μl) 0.4 μl 1.0 U / 50 μl
Autoclaved, distilled water up to 20 μl  

2.PCR cycle conditions

Step5: Transformation
The 2nd Ω-PCR products are digested by DpnI to remove template plasmid before transformation, avoiding the excess of negative clones.

Reference

[1] Chen L, Wang F, Wang X, Liu YG. Robust one-tube Ω-PCR strategy accelerates precise sequence modification of plasmids for functional genomics. Plant Cell Physiology. 2013, 54: 634-642