Team:Groningen/Template/MODULE/home

From 2014.igem.org

(Difference between revisions)
Line 29: Line 29:
</html>{{:Team:Groningen/Template/MODULE/tmpl_imagelinkmodule|Abstract (Click to see all 11 languages):|c/ce/Homepageabstractart.art.png|2014.igem.org/Team:Groningen:abstract|
</html>{{:Team:Groningen/Template/MODULE/tmpl_imagelinkmodule|Abstract (Click to see all 11 languages):|c/ce/Homepageabstractart.art.png|2014.igem.org/Team:Groningen:abstract|
-
<html><a href="https://2014.igem.org/Team:Groningen:abstract">See our abstract in 11 languages!</a></html>
 
Infections caused by <i>Staphylococcus aureus</i> and <i>Pseudomonas aeruginosa</i> often pose problems for burn wound treatments. We developed a new kind of bandage that prevents these infections and reduces the use of antibiotics, thereby lowering the risk of developing antibiotic resistance. The bandage consists of a hydrogel that contains genetically engineered <i>Lactococcus lactis</i> with nutrients. The engineered strain of <i>L. lactis</i> detects the quorum sensing molecules of the two pathogens in the wound and subsequently produces the antimicrobial nisin as well as some other Infection-Preventing-Molecules (IPMs). These IPMs are the anti-biofilm protein Dispersin B and the quorum quenching protein AHLase. The gel is placed between two layers, a top layer to allow diffusion of gases and a bottom layer to contain the bacteria within the bandage. Hydrating the gel by breaking adjacent water pockets initiates the growth of the bacteria, thereby activating the bandage.
Infections caused by <i>Staphylococcus aureus</i> and <i>Pseudomonas aeruginosa</i> often pose problems for burn wound treatments. We developed a new kind of bandage that prevents these infections and reduces the use of antibiotics, thereby lowering the risk of developing antibiotic resistance. The bandage consists of a hydrogel that contains genetically engineered <i>Lactococcus lactis</i> with nutrients. The engineered strain of <i>L. lactis</i> detects the quorum sensing molecules of the two pathogens in the wound and subsequently produces the antimicrobial nisin as well as some other Infection-Preventing-Molecules (IPMs). These IPMs are the anti-biofilm protein Dispersin B and the quorum quenching protein AHLase. The gel is placed between two layers, a top layer to allow diffusion of gases and a bottom layer to contain the bacteria within the bandage. Hydrating the gel by breaking adjacent water pockets initiates the growth of the bacteria, thereby activating the bandage.
}}<html>
}}<html>

Revision as of 02:21, 18 October 2014

Home > Home
 
 
 
 
 
 
 
 
We are still looking for sponsors
 
 
We are still looking for sponsors
 
Please contact our acquisition team via Anna Lauxen (annalauxen@igemgroningen.com)
 
 
 
 
Project
 
 
Project
 
Read everything about our project.
 
 
 
 
Building manual
 
 
Building manual
 
Problem making the paper toy on the flyer? Click here!
 
 
 
 
Abstract (Click to see all 11 languages):
 
 
Abstract (Click to see all 11 languages):
 
Infections caused by Staphylococcus aureus and Pseudomonas aeruginosa often pose problems for burn wound treatments. We developed a new kind of bandage that prevents these infections and reduces the use of antibiotics, thereby lowering the risk of developing antibiotic resistance. The bandage consists of a hydrogel that contains genetically engineered Lactococcus lactis with nutrients. The engineered strain of L. lactis detects the quorum sensing molecules of the two pathogens in the wound and subsequently produces the antimicrobial nisin as well as some other Infection-Preventing-Molecules (IPMs). These IPMs are the anti-biofilm protein Dispersin B and the quorum quenching protein AHLase. The gel is placed between two layers, a top layer to allow diffusion of gases and a bottom layer to contain the bacteria within the bandage. Hydrating the gel by breaking adjacent water pockets initiates the growth of the bacteria, thereby activating the bandage.
 
 
 
 
Policy and Practice
 
 
Policy and Practice
 
We reached out to the public and spread amazement and inspiration. Apart from that, we considered the ethical implications and future of our project and constructively thought about GMO regulation.
 
 
 
 
View our medal checklist
 
 
View our medal checklist
 
A quick link to the medal requirements we fulfilled.