Team:UT-Dallas/Project

From 2014.igem.org

(Difference between revisions)
 
(27 intermediate revisions not shown)
Line 1: Line 1:
-
<!-- *** What falls between these lines is the Alert Box!  You can remove it from your pages once you have read and understood the alert *** -->
 
-
 
-
 
-
{{CSS/Main}}
 
-
 
-
 
<html>
<html>
-
 
+
<link rel="stylesheet" href="https://2014.igem.org/Team:UT-Dallas/style-css?action=raw&ctype=text/css">
-
<!--main content -->
+
<link rel="stylesheet" href="https://2014.igem.org/Team:UT-Dallas/tooltipster.css?action=raw&ctype=text/css">
-
<table width="70%" align="center">
+
<link rel="stylesheet" href="https://2014.igem.org/Team:UT-Dallas/dropit.css?action=raw&ctype=text/css">
-
 
+
<script src="https://2014.igem.org/Team:UT-Dallas/TweenMax.min.js?action=raw&ctype=text/javascript"></script>
-
 
+
<script src="https://2014.igem.org/Team:UT-Dallas/jquery.js?action=raw&ctype=text/javascript"></script>
-
<!--welcome box -->
+
<script src="https://2014.igem.org/Team:UT-Dallas/jquery.scrollmagic.min.js?action=raw&ctype=text/javascript"></script>
-
<tr>
+
<script src="https://2014.igem.org/Team:UT-Dallas/jquery.tooltipster.min.js?action=raw&ctype=text/javascript"></script>
-
<td style="border:1px solid black;" colspan="3" align="center" height="150px" bgColor=#FF404B>
+
<script src="https://2014.igem.org/Team:UT-Dallas/dropit.js?action=raw&ctype=text/javascript"></script>
-
<h1 >WELCOME TO iGEM 2014! </h1>
+
<div id="content_body">
-
<p>Your team has been approved and you are ready to start the iGEM season!
+
<section id="titlechart"></html>{{Header_menu}}<html><div class="page_content"><br><h2>Introduction</H2><p style="display:block">
-
<br>On this page you can document your project, introduce your team members, document your progress <br> and share your iGEM experience with the rest of the world! </p>
+
We envision a new paradigm for treating infections of the human gastrointestinal tract through exploitation of engineered probiotics that produce anti-microbials with high specificity for pathogens. The anti-microbials we are exploring do not utilize a one-fit all therapy mold, but target unique features specific to organisms at the genetic level. Towards this aim, we have utilized a general-purpose system that will be delivered to pathogenic bacteria from an engineered bacterial species found in the GI tract (Escherichia coli), which will cleave pathogenic genes with single nucleotide resolution. To achieve specific genome targeting, we will utilize the CRISPR/Cas9 system with gRNA engineered to recognize genes from infectious bacteria that contribute to pathogenicity in humans. Our CRISPR/Cas9 system will be delivered from the engineered E. coli to infectious bacteria using bacterial specific phages, minimizing any side-effects to native microbiota and human-host cells. As a proof-of-principle for our engineered probiotic, we are starting by targeting Vibrio cholerae, however we hope to expand the system to other pathogens of the GI tract.  
-
<br>
+
</p><br><br>
-
<p style="color:#E7E7E7"> <a href="https://2014.igem.org/wiki/index.php?title=Team:UT-Dallas/Project&action=edit"style="color:#FFFFFF"> Click here  to edit this page!</a> </p>
+
</div>
-
</td>
+
</section>
-
</tr>
+
<section class="demo">
-
 
+
<div id="trigger1" class="spacer s0"></div>
-
<tr> <td colspan="3"  height="5px"> </td></tr>
+
<div id="parallax1" class="spacer s2" style="background-image: url(https://static.igem.org/mediawiki/2014/1/19/UTD_Lab.jpg);"></div>
-
<!-- end welcome box -->
+
<div class="spacer s1">
-
<tr>
+
<div class="page_content">
-
 
+
<br><h2>Probiotics</H2><br><p style="display:block">
-
<!--navigation menu -->
+
<br><br>
-
<td align="center" colspan="3">
+
Once complete, our system will be able to remain as a stable population in a person’s gut until the event of a V. cholerae infection. Detection of V. cholerae will then activate production of the phage delivery system, which will package the gRNA and Cas9 targeting system into a phage coat, exit the probiotic and transfer the system into V. cholerae present in the gut (transmission of a heterologous DNA message via phage was demonstrated by Ortiz and Endy in 2012 and featured in Waterloo’s 2013 iGEM project (2)). Once inside V. cholerae, the targeting system will bind and cleave sites complementary to the gRNA that correspond to selected pathogenicity genes. We proposed using Cas9/gRNA to target and kill pathogens as opposed to traditional phage therapy using a targeted lytic phage because it allowed us to differentiate and kill harmful pathogens of a strain that has both harmful and harmless serotypes. The gRNA in our system, while specific to V. cholerae, can easily be altered with PCR to target unique regions in other gastrointestinal pathogens.
-
 
+
</p><br><br>
-
<table  width="100%">
+
</div>
-
<tr heigth="15px"></tr>
+
</div>
-
<tr heigth="75px">  
+
<div id="trigger2" class="spacer s0"></div>
-
 
+
<div id="parallax2" class="spacer s2" style="background-image: url(https://static.igem.org/mediawiki/2014/c/cb/Lab2.jpg);"></div>
-
 
+
<div class="spacer s1">
-
<td style="border:1px solid black;" align="center" height ="45px" onMouseOver="this.bgColor='#d3d3d3'" onMouseOut="this.bgColor='#e7e7e7'" bgColor=#e7e7e7> 
+
<div class="page_content">
-
<a href="https://2014.igem.org/Team:UT-Dallas"style="color:#000000">Home </a> </td>
+
<br><h2>References</H2><br><p style="display:block">
-
 
+
1. Sinclair D., Abba K., Zaman K., Qadri F., Graves P.M., Oral vaccines for preventing cholera. Cochrane Database Syst Rev. 2011 Mar 16;(3):CD008603.<br>
-
<td style="border:1px solid black;" align="center" height ="45px" onMouseOver="this.bgColor='#d3d3d3'" onMouseOut="this.bgColor='#e7e7e7'" bgColor=#e7e7e7>
+
2. Ortiz M.E., Endy D. Engineered cell-cell communication via DNA messaging. J Biol Eng. 2012 Sep 7;6(1):16.</p><br><br>
-
<a href="https://2014.igem.org/Team:UT-Dallas/Team"style="color:#000000"> Team </a> </td>
+
</div>
-
 
+
</div>
-
<td style="border:1px solid black;" align="center"  height ="45px"  onMouseOver="this.bgColor='#d3d3d3'" onMouseOut="this.bgColor='#e7e7e7'" bgColor=#e7e7e7>
+
<div id="trigger3" class="spacer s0"></div>
-
<a href="https://igem.org/Team.cgi?year=2014&team_name=UT-Dallas"style="color:#000000"> Official Team Profile </a></td>
+
<div id="parallax3" class="spacer s2" style="background-image: url(https://static.igem.org/mediawiki/2014/b/b8/Team.jpg);"></div>
-
 
+
<div class="spacer s2"></div>
-
<td style="border:1px solid black" align="center"  height ="45px" onMouseOver="this.bgColor='#d3d3d3'" onMouseOut="this.bgColor='#e7e7e7'" bgColor=#e7e7e7>
+
<script src="https://2014.igem.org/Team:UT-Dallas/general.js?action=raw&ctype=text/javascript"></script>
-
<a href="https://2014.igem.org/Team:UT-Dallas/Project"style="color:#000000"> Project</a></td>
+
</section>
-
 
+
</div>
-
<td style="border:1px solid black;" align="center"  height ="45px" onMouseOver="this.bgColor='#d3d3d3'" onMouseOut="this.bgColor='#e7e7e7'" bgColor=#e7e7e7>
+
-
<a href="https://2014.igem.org/Team:UT-Dallas/Parts"style="color:#000000"> Parts</a></td>
+
-
 
+
-
<td style="border:1px solid black;" align="center" height ="45px" onMouseOver="this.bgColor='#d3d3d3'" onMouseOut="this.bgColor='#e7e7e7'" bgColor=#e7e7e7>
+
-
<a href="https://2014.igem.org/Team:UT-Dallas/Modeling"style="color:#000000"> Modeling</a></td>
+
-
 
+
-
<td style="border:1px solid black;" align="center" height ="45px" onMouseOver="this.bgColor='#d3d3d3'" onMouseOut="this.bgColor='#e7e7e7'" bgColor=#e7e7e7> 
+
-
<a href="https://2014.igem.org/Team:UT-Dallas/Notebook"style="color:#000000"> Notebook</a></td>
+
-
 
+
-
<td style="border:1px solid black;" align="center"  height ="45px" onMouseOver="this.bgColor='#d3d3d3'" onMouseOut="this.bgColor='#e7e7e7'" bgColor=#e7e7e7>
+
-
<a href="https://2014.igem.org/Team:UT-Dallas/Safety"style=" color:#000000"> Safety </a></td>
+
-
 
+
-
<td style="border:1px solid black;" align="center"  height ="45px" onMouseOver="this.bgColor='#d3d3d3'" onMouseOut="this.bgColor='#e7e7e7'" bgColor=#e7e7e7>
+
-
<a href="https://2014.igem.org/Team:UT-Dallas/Attributions"style="color:#000000"> Attributions </a></td>
+
-
 
+
-
 
+
-
<td align ="center"> <a href="https://2014.igem.org/Main_Page"> <img src="https://static.igem.org/mediawiki/igem.org/6/60/Igemlogo_300px.png" width="55px"></a> </td>
+
-
</tr>
+
-
</table>
+
-
 
+
-
</tr>
+
-
</tr>
+
-
</td>
+
-
 
+
-
<tr> <td colspan="3" height="15px"> </td></tr>
+
-
<tr><td bgColor="#e7e7e7" colspan="3" height="1px"> </tr>
+
-
<tr> <td colspan="3"  height="5px"> </td></tr>
+
-
 
+
-
 
+
-
 
+
-
<!--Project content  -->
+
-
<tr><td > <h3> Project Description </h3></td>
+
-
<td ></td >
+
-
<td > <h3> Content</h3></td>
+
-
</tr>
+
-
 
+
-
<tr>
+
-
<td width="45%" valign="top">
+
-
<p>Treating infectious diseases of the gastrointestinal (GI) tract with antibiotics disrupts a patient's gut microbiota and can increase the prevalence of antibiotic resistant strains. The increasing population of multi-drug resistant bacterial strains, both within and outside of health centers, is a growing health concern that is becoming progressively difficult to treat. Additionally, it is a well-recognized fact within the global health community that traditional antibiotics do not represent a sustainable method of treatment for bacterial infections. There is a clear drive towards minimally invasive, prophylactic therapies for such ailments, but is a demand that so far, has not been adequately met. Our project will aim at replacing broad and narrow spectrum antibiotics with “precision therapies” that have etiology targeting capacity at the species level as well as contain minimal cross-talk among healthy tissues, organs, and symbiotic organisms.
+
-
 
+
-
<p>
+
-
We envision a new paradigm for treating infections of the human gastrointestinal tract through exploitation of engineered probiotics that produce anti-microbials with high specificity for pathogens. The anti-microbials we are exploring do not utilize a one-fit all therapy mold, but target unique features specific to organisms at the genetic level. Towards this aim, we have utilized a general-purpose system that will be delivered to pathogenic bacteria from an engineered bacterial species found in the GI tract (Escherichia coli), which will cleave pathogenic genes with single nucleotide resolution. To achieve specific genome targeting, we will utilize the CRISPR/Cas9 system with gRNA engineered to recognize genes from infectious bacteria that contribute to pathogenicity in humans. Our CRISPR/Cas9 system will be delivered from the engineered E. coli to infectious bacteria using bacterial specific phages, minimizing any side-effects to native microbiota and human-host cells. As a proof-of-principle for our engineered probiotic, we are starting by targeting Vibrio cholerae, however we hope to expand the system to other pathogens of the GI tract.
+
-
</p>
+
-
<br>
+
-
<h3>References </h3>
+
-
<p>
+
-
iGEM teams are encouraged to record references you use during the course of your research. They should be posted somewhere on your wiki so that judges and other visitors can see how you though about your project and what works inspired you. </p>  
+
-
</td>
+
-
 
+
-
<td></td>
+
-
<td  width="45%" valign="top">
+
-
<p> You can use these subtopics to further explain your project</p>
+
-
 
+
-
<ol>
+
-
<li><a href="https://2014.igem.org/Team:UT-Dallas/Project/history"> History of Cholera </a></li>
+
-
<li><a href="https://2014.igem.org/Team:UT-Dallas/Project/details"> Project Details </a> </li>
+
-
<li><a href="https://2014.igem.org/Team:UT-Dallas/Project/methods"> Materials and Methods</a></li>
+
-
<li>The Experiments</li>
+
-
<li><a href="https://2014.igem.org/Team:UT-Dallas/Project/results">Results</a></li>
+
-
<li><a href="https://2014.igem.org/Team:UT-Dallas/Project/data">Data analysis</a></li>
+
-
<li><a href="https://2014.igem.org/Team:UT-Dallas/Project/conclusions">Conclusions</a></li>
+
-
</ol>
+
-
 
+
-
<p>
+
-
It's important for teams to describe all the creativity that goes into an iGEM project, along with all the great ideas your team will come up with over the course of your work.
+
-
</p>
+
-
 
+
-
<p>
+
-
It's also important to clearly describe your achievements so that judges will know what you tried to do and where you succeeded. Please write your project page such that what you achieved is easy to distinguish from what you attempted.
+
-
</p>
+
-
 
+
-
</td>
+
-
 
+
-
</tr>
+
-
 
+
-
 
+
-
</table>
+
</html>
</html>

Latest revision as of 01:33, 18 October 2014


Introduction

We envision a new paradigm for treating infections of the human gastrointestinal tract through exploitation of engineered probiotics that produce anti-microbials with high specificity for pathogens. The anti-microbials we are exploring do not utilize a one-fit all therapy mold, but target unique features specific to organisms at the genetic level. Towards this aim, we have utilized a general-purpose system that will be delivered to pathogenic bacteria from an engineered bacterial species found in the GI tract (Escherichia coli), which will cleave pathogenic genes with single nucleotide resolution. To achieve specific genome targeting, we will utilize the CRISPR/Cas9 system with gRNA engineered to recognize genes from infectious bacteria that contribute to pathogenicity in humans. Our CRISPR/Cas9 system will be delivered from the engineered E. coli to infectious bacteria using bacterial specific phages, minimizing any side-effects to native microbiota and human-host cells. As a proof-of-principle for our engineered probiotic, we are starting by targeting Vibrio cholerae, however we hope to expand the system to other pathogens of the GI tract.




Probiotics




Once complete, our system will be able to remain as a stable population in a person’s gut until the event of a V. cholerae infection. Detection of V. cholerae will then activate production of the phage delivery system, which will package the gRNA and Cas9 targeting system into a phage coat, exit the probiotic and transfer the system into V. cholerae present in the gut (transmission of a heterologous DNA message via phage was demonstrated by Ortiz and Endy in 2012 and featured in Waterloo’s 2013 iGEM project (2)). Once inside V. cholerae, the targeting system will bind and cleave sites complementary to the gRNA that correspond to selected pathogenicity genes. We proposed using Cas9/gRNA to target and kill pathogens as opposed to traditional phage therapy using a targeted lytic phage because it allowed us to differentiate and kill harmful pathogens of a strain that has both harmful and harmless serotypes. The gRNA in our system, while specific to V. cholerae, can easily be altered with PCR to target unique regions in other gastrointestinal pathogens.




References


1. Sinclair D., Abba K., Zaman K., Qadri F., Graves P.M., Oral vaccines for preventing cholera. Cochrane Database Syst Rev. 2011 Mar 16;(3):CD008603.
2. Ortiz M.E., Endy D. Engineered cell-cell communication via DNA messaging. J Biol Eng. 2012 Sep 7;6(1):16.