|
|
Line 54: |
Line 54: |
| | | |
| <figure align="center"><img src="https://static.igem.org/mediawiki/2014/c/c9/Ustc-2014-rna-principle.png" class="th" \><figcaption> | | <figure align="center"><img src="https://static.igem.org/mediawiki/2014/c/c9/Ustc-2014-rna-principle.png" class="th" \><figcaption> |
- | | + | Fig.1 The structure of a kind of ribozyme. |
| </figcaption></figure> | | </figcaption></figure> |
| | | |
Line 67: |
Line 67: |
| <p>The ribozyme fused with an aptamer is put in front of a GFP sequence. When theophylline is added, the cleavage is induced and the expression of protein declines. The whole RNA uses a Lac promoter.</p> | | <p>The ribozyme fused with an aptamer is put in front of a GFP sequence. When theophylline is added, the cleavage is induced and the expression of protein declines. The whole RNA uses a Lac promoter.</p> |
| <figure align="center"><img src="https://static.igem.org/mediawiki/2014/9/9c/Ustc-2014-rna-theoph.png" class="th" \><figcaption> | | <figure align="center"><img src="https://static.igem.org/mediawiki/2014/9/9c/Ustc-2014-rna-theoph.png" class="th" \><figcaption> |
- | | + | Fig.2 The principle of theophylline sensor passage. |
| </figcaption></figure> | | </figcaption></figure> |
| <figure align="center"><img src="https://static.igem.org/mediawiki/2014/a/a8/Ustc-2014-rna-theop0.png" class="th" \><figcaption> | | <figure align="center"><img src="https://static.igem.org/mediawiki/2014/a/a8/Ustc-2014-rna-theop0.png" class="th" \><figcaption> |
- | | + | Fig.3 The schematic of theophylline sensor passage. |
| </figcaption></figure> | | </figcaption></figure> |
| <figure align="center"><img src="https://static.igem.org/mediawiki/2014/5/55/Ustc-2014-rna-theop.png" class="th" \><figcaption> | | <figure align="center"><img src="https://static.igem.org/mediawiki/2014/5/55/Ustc-2014-rna-theop.png" class="th" \><figcaption> |
- | | + | Fig.4 Our test circuit design for theophylline sensor passage. |
| </figcaption></figure> | | </figcaption></figure> |
| | | |
Line 82: |
Line 82: |
| | | |
| <figure align="center"><img src="https://static.igem.org/mediawiki/2014/a/a7/Ustc-2014-rna-YESh.png" class="th" \><figcaption> | | <figure align="center"><img src="https://static.igem.org/mediawiki/2014/a/a7/Ustc-2014-rna-YESh.png" class="th" \><figcaption> |
- | | + | Fig.5 The principle of YES gate. |
| </figcaption></figure> | | </figcaption></figure> |
| <figure align="center"><img src="https://static.igem.org/mediawiki/2014/4/47/Ustc-2014-rna-YES0.png" class="th" \><figcaption> | | <figure align="center"><img src="https://static.igem.org/mediawiki/2014/4/47/Ustc-2014-rna-YES0.png" class="th" \><figcaption> |
- | | + | Fig.6 The schematic of YES gate. |
| </figcaption></figure> | | </figcaption></figure> |
| <figure align="center"><img src="https://static.igem.org/mediawiki/2014/9/96/Ustc-2014-rna-YES.png" class="th" \><figcaption> | | <figure align="center"><img src="https://static.igem.org/mediawiki/2014/9/96/Ustc-2014-rna-YES.png" class="th" \><figcaption> |
- | | + | Fig.7 Our test circuits design for YES gate. |
| </figcaption></figure> | | </figcaption></figure> |
| | | |
Line 95: |
Line 95: |
| <p>The ribozyme is activated while the short RNA, key of no is no added. When lac is added, the short RNA combines with the ribozyme and restrains the cleavage, thus the level of GFP increases.</p> | | <p>The ribozyme is activated while the short RNA, key of no is no added. When lac is added, the short RNA combines with the ribozyme and restrains the cleavage, thus the level of GFP increases.</p> |
| <figure align="center"><img src="https://static.igem.org/mediawiki/2014/7/79/Ustc-2014-rna-NOTh.png" class="th" \><figcaption> | | <figure align="center"><img src="https://static.igem.org/mediawiki/2014/7/79/Ustc-2014-rna-NOTh.png" class="th" \><figcaption> |
- | | + | Fig.8 The principle of NO gate. |
| </figcaption></figure> | | </figcaption></figure> |
| <figure align="center"><img src="https://static.igem.org/mediawiki/2014/6/61/Ustc-2014-rna-NO0.png" class="th" \><figcaption> | | <figure align="center"><img src="https://static.igem.org/mediawiki/2014/6/61/Ustc-2014-rna-NO0.png" class="th" \><figcaption> |
- | | + | Fig.9 The schematic of NO gate. |
| </figcaption></figure> | | </figcaption></figure> |
| <figure align="center"><img src="https://static.igem.org/mediawiki/2014/1/16/Ustc-2014-rna-NO.png" class="th" \><figcaption> | | <figure align="center"><img src="https://static.igem.org/mediawiki/2014/1/16/Ustc-2014-rna-NO.png" class="th" \><figcaption> |
- | | + | Fig.10 Our test circuit for NO gate. |
| </figcaption></figure> | | </figcaption></figure> |
| | | |
Line 109: |
Line 109: |
| <p>The ribozyme’s activity must be activated when the short RNA key of and_1 and key of and_2 are both transcribed, induced by <i>lac</i> and <i>arc</i>. </p> | | <p>The ribozyme’s activity must be activated when the short RNA key of and_1 and key of and_2 are both transcribed, induced by <i>lac</i> and <i>arc</i>. </p> |
| <figure align="center"><img src="https://static.igem.org/mediawiki/2014/d/d9/Ustc-2014-rna-ANDh.png" class="th" \><figcaption> | | <figure align="center"><img src="https://static.igem.org/mediawiki/2014/d/d9/Ustc-2014-rna-ANDh.png" class="th" \><figcaption> |
- | | + | Fig.11 The principle of AND gate. |
| </figcaption></figure> | | </figcaption></figure> |
| <figure align="center"><img src="https://static.igem.org/mediawiki/2014/2/27/Ustc-2014-rna-AND0.png" class="th" \><figcaption> | | <figure align="center"><img src="https://static.igem.org/mediawiki/2014/2/27/Ustc-2014-rna-AND0.png" class="th" \><figcaption> |
- | | + | Fig.12 The schematic of AND gate. |
| </figcaption></figure> | | </figcaption></figure> |
| <figure align="center"><img src="https://static.igem.org/mediawiki/2014/5/50/Ustc-2014-rna-AND.png" class="th" \><figcaption> | | <figure align="center"><img src="https://static.igem.org/mediawiki/2014/5/50/Ustc-2014-rna-AND.png" class="th" \><figcaption> |
- | | + | Fig.13 Our test circuit design for AND gate. |
| </figcaption></figure> | | </figcaption></figure> |
| | | |
Line 121: |
Line 121: |
| | | |
| <p>The ribozyme’s activity needs to be activated when the short RNA key of or_1 and key of or_2 are both transcribed, induced by lac and arc. </p> | | <p>The ribozyme’s activity needs to be activated when the short RNA key of or_1 and key of or_2 are both transcribed, induced by lac and arc. </p> |
- | | + | Fig.14 The principle of OR gate. |
| <figure align="center"><img src="https://static.igem.org/mediawiki/2014/6/60/Ustc-2014-rna-ORh.png" class="th" \><figcaption> | | <figure align="center"><img src="https://static.igem.org/mediawiki/2014/6/60/Ustc-2014-rna-ORh.png" class="th" \><figcaption> |
- | | + | Fig.14 The principle of OR gate. |
| </figcaption></figure> | | </figcaption></figure> |
| <figure align="center"><img src="https://static.igem.org/mediawiki/2014/7/71/Ustc-2014-rna-OR0.png" class="th" \><figcaption> | | <figure align="center"><img src="https://static.igem.org/mediawiki/2014/7/71/Ustc-2014-rna-OR0.png" class="th" \><figcaption> |
- | | + | Fig.15 The schematic of OR gate. |
| </figcaption></figure> | | </figcaption></figure> |
| <figure align="center"><img src="https://static.igem.org/mediawiki/2014/5/58/Ustc-2014-rna-OR.png" class="th" \><figcaption> | | <figure align="center"><img src="https://static.igem.org/mediawiki/2014/5/58/Ustc-2014-rna-OR.png" class="th" \><figcaption> |
- | | + | Fig.16 Our test circuit design for OR gate. |
| </figcaption></figure> | | </figcaption></figure> |
| | | |
Line 148: |
Line 148: |
| | | |
| <figure align="center"><img src="https://static.igem.org/mediawiki/2014/9/9d/Ustc-2014-rna-principle2.png" class="th" \><figcaption> | | <figure align="center"><img src="https://static.igem.org/mediawiki/2014/9/9d/Ustc-2014-rna-principle2.png" class="th" \><figcaption> |
- | | + | Fig.17 The schematic of our idea. |
| </figcaption></figure> | | </figcaption></figure> |
- |
| |
- | [principle.png]
| |
- | Fig.1 The schematic of our idea.
| |
| | | |
| <figure align="center"><img src="https://static.igem.org/mediawiki/2014/d/d6/Ustc-2014-rna-KAIST_Experimental_Results.png" class="th" \><figcaption> | | <figure align="center"><img src="https://static.igem.org/mediawiki/2014/d/d6/Ustc-2014-rna-KAIST_Experimental_Results.png" class="th" \><figcaption> |
- | | + | Fig.18 The experimental verification done by team KAIST. Specific colors were expressed under the control of different expression levels of recombinase. |
| </figcaption></figure> | | </figcaption></figure> |
- |
| |
- | [KAIST_Experimental_Results.png]
| |
- | Fig.2 The experimental verification done by team KAIST. Specific colors were expressed under the control of different expression levels of recombinase.
| |
| | | |
| <p>In fact, this design makes it possible to adjust the color a single cell in. Given that the light-sensing system were replaced by another set of sensing system, the sensing signal would be converted to chromatographic output, which, compared to the traditional intensity-output system, not only make the results more intuitive, but also reduces the interference of the intensity due to environmental fluctuations.</p> | | <p>In fact, this design makes it possible to adjust the color a single cell in. Given that the light-sensing system were replaced by another set of sensing system, the sensing signal would be converted to chromatographic output, which, compared to the traditional intensity-output system, not only make the results more intuitive, but also reduces the interference of the intensity due to environmental fluctuations.</p> |
| | | |
| <figure align="center"><img src="https://static.igem.org/mediawiki/2014/0/07/Ustc-2014-rna-improvement.png" class="th" \><figcaption> | | <figure align="center"><img src="https://static.igem.org/mediawiki/2014/0/07/Ustc-2014-rna-improvement.png" class="th" \><figcaption> |
- | | + | Fig.19 With the improved in-output system, the traditional output signal intensity was transformed into chromatography, which relies on the input signal and shows better anti-disturbance features.The top output bar represents the traditional output pattern, which can only presents a "deep-light" output and gets interference easily. The middle shows with three different kinds of matches of two chromoproteins, "red-green", "red-blue"& "green-blue", signals are output in chromatographies. The bottom provides expected effects of output with further improvement. |
- | </figcaption></figure>
| + | </figcaption></figure> |
- | [improvement.png]
| + | |
- | Fig.3 With the improved in-output system, the traditional output signal intensity was transformed into chromatography, which relies on the input signal and shows better anti-disturbance features.The top output bar represents the traditional output pattern, which can only presents a "deep-light" output and gets interference easily. The middle shows with three different kinds of matches of two chromoproteins, "red-green", "red-blue"& "green-blue", signals are output in chromatographies. The bottom provides expected effects of output with further improvement.
| + | |
| | | |
| <p>To realize the above vision completely, not only the precise modeling and analysis is needed, but also a lot of debugging work is inevitable and crucial (such as the expression level-upstream control curve, the effect of concentration on the activity of the enzyme reverse efficiency). And each time the debugging means a new plasmid construction, making it°Øs not a short-time work at all.</p> | | <p>To realize the above vision completely, not only the precise modeling and analysis is needed, but also a lot of debugging work is inevitable and crucial (such as the expression level-upstream control curve, the effect of concentration on the activity of the enzyme reverse efficiency). And each time the debugging means a new plasmid construction, making it°Øs not a short-time work at all.</p> |
Line 179: |
Line 171: |
| <li><a href="https://2012.igem.org/Team:KAIST_Korea">2012 KAIST_Korea</a></li> | | <li><a href="https://2012.igem.org/Team:KAIST_Korea">2012 KAIST_Korea</a></li> |
| <li><a href="http://parts.igem.org/Part:BBa_K907000">Part BBa_K907000</a></li> | | <li><a href="http://parts.igem.org/Part:BBa_K907000">Part BBa_K907000</a></li> |
| + | <li><a>Robert Penchovsky & Ronald R Breaker Computational design and experimental validation of oligonucleotide-sensing allosteric ribozymes</a></li> |
| </ol> | | </ol> |
| | | |