Team:TCU Taiwan/CRISPR

From 2014.igem.org

(Difference between revisions)
 
(5 intermediate revisions not shown)
Line 137: Line 137:
     <ul>
     <ul>
       <li><a href="https://2014.igem.org/Team:TCU_Taiwan/Team"><font size="3">Members</font></a></li>
       <li><a href="https://2014.igem.org/Team:TCU_Taiwan/Team"><font size="3">Members</font></a></li>
 +
      <li><a href="https://2014.igem.org/Team:TCU_Taiwan/Achievements"><font size="3">Achievements</font></a></li>
       <li><a href="https://igem.org/Team.cgi?id=1473" target="_blank"><font size="3">Official Team Profile</font></a></li>
       <li><a href="https://igem.org/Team.cgi?id=1473" target="_blank"><font size="3">Official Team Profile</font></a></li>
       <li><a href="https://2014.igem.org/Team:TCU_Taiwan/Contact"><font size="3">Contact</font></a></li>
       <li><a href="https://2014.igem.org/Team:TCU_Taiwan/Contact"><font size="3">Contact</font></a></li>
Line 217: Line 218:
       </tr>
       </tr>
       <tr>
       <tr>
-
         <td><table width="60%" border="1" cellspacing="0" cellpadding="0" align="center">
+
         <td><table width="60%" border="0" cellspacing="0" cellpadding="0" align="center">
               <tr>
               <tr>
                 <td><img src="https://static.igem.org/mediawiki/2014/a/a3/TCU_CRISPR.jpg" width="100%"/></td>
                 <td><img src="https://static.igem.org/mediawiki/2014/a/a3/TCU_CRISPR.jpg" width="100%"/></td>
Line 223: Line 224:
               <tr>
               <tr>
                 <td align="center"><font size="3" face="Verdana"><strong>Fig.1 Diagram of the possible mechanism for CRISPR.</strong></font></td>
                 <td align="center"><font size="3" face="Verdana"><strong>Fig.1 Diagram of the possible mechanism for CRISPR.</strong></font></td>
 +
              </tr>
 +
              <tr>
 +
                <td align="right">From <em>2013 British_Columbia</em></td>
               </tr>
               </tr>
             </table></td>
             </table></td>
Line 230: Line 234:
       </tr>
       </tr>
       <tr>
       <tr>
-
         <td><font size="3" face="Verdana" color="#333"><p>We chose <a href="http://en.wikipedia.org/wiki/Phagemid" target="_blank">CRISPR</a> to knock-out antibiotic resistance. CRISPR system is  a bacteria immune system which is used as gene engineer machine now. It has  three types and we chose the type II CRISPR system. <br />
+
         <td><font size="3" face="Verdana" color="#333"><p>We chose <a href="http://en.wikipedia.org/wiki/CRISPR" target="_blank">CRISPR</a> to knock-out antibiotic resistance. CRISPR system is  a bacteria immune system which is used as gene engineer machine now. It has  three types and we chose the type II CRISPR system. <br />
-
           <p>This system contains three parts. First, this system can express two  kinds of single strand RNA:  tracrRNA and  crRNA. crRNA&rsquo;s structure is like &ldquo;repeat---spacer---repeat&rdquo;, the spacer part is  complementary to target gene&rsquo;s DNA sequence, the repeat is complementary to  tracrRNA while tracrRNA can also have interation with a protein coded in this  system --- Cas9, an endonuclease.</p><br />
+
           <p>This system contains three parts. First, this system can express two  kinds of single strand RNA:  tracrRNA and  crRNA. crRNA&rsquo;s structure is like &ldquo;repeat---spacer---repeat&rdquo;, the spacer part is  complementary to target gene&rsquo;s DNA sequence, the repeat is complementary to  tracrRNA while tracrRNA can also have interaction with a protein coded in this  system --- Cas9, an endonuclease.</p><br />
-
           <p>Once we modified the spacer sequence of a CRISPR system and  transform it into bacteria, it will search for target gene (antibiotics resistance  gene in our project) in bacteria&rsquo;s genome by crRNA. Once the target is found,  Cas9 protein will bind on this gene&rsquo;s DNA sequence with the help of tarcrRNA  and crRNA. Then, Cas9 will make a small double strand break on the gene. So  this gene&rsquo;s sequence will be modified by later homozygous recombination, result  in the knock-out of this gene.</p></font></td>
+
           <p>Once we modified the spacer sequence of a CRISPR system and  transformed it into bacteria, it will search for target gene (antibiotics resistance  gene in our project) in bacteria&rsquo;s genome by crRNA. Once the target is found,  Cas9 protein will bind on this gene&rsquo;s DNA sequence with the help of tarcrRNA  and crRNA. Then, Cas9 will make a small double strand break on the gene. So  this gene&rsquo;s sequence will be modified by later homozygous recombination, result  in the knock-out of this gene.</p></font></td>
       </tr>
       </tr>
       <tr>
       <tr>

Latest revision as of 21:18, 17 October 2014


 
CRISPR
 
 
CRISPR
 
Fig.1 Diagram of the possible mechanism for CRISPR.
From 2013 British_Columbia
 

We chose CRISPR to knock-out antibiotic resistance. CRISPR system is a bacteria immune system which is used as gene engineer machine now. It has three types and we chose the type II CRISPR system.

This system contains three parts. First, this system can express two kinds of single strand RNA:  tracrRNA and crRNA. crRNA’s structure is like “repeat---spacer---repeat”, the spacer part is complementary to target gene’s DNA sequence, the repeat is complementary to tracrRNA while tracrRNA can also have interaction with a protein coded in this system --- Cas9, an endonuclease.


Once we modified the spacer sequence of a CRISPR system and transformed it into bacteria, it will search for target gene (antibiotics resistance gene in our project) in bacteria’s genome by crRNA. Once the target is found, Cas9 protein will bind on this gene’s DNA sequence with the help of tarcrRNA and crRNA. Then, Cas9 will make a small double strand break on the gene. So this gene’s sequence will be modified by later homozygous recombination, result in the knock-out of this gene.

 
 
 
^


    
Team Members Project Parts Human Pratics Modeling Safety Notebook Attributions

Lost the way? Use it to help you if you're lost.

^