Team:BYU Provo/Safety

From 2014.igem.org

(Difference between revisions)
Line 85: Line 85:
<p>There are specific safety rules and regulations that our team follows to ensure our own safety. These include wearing long pants and closed toe water resistant shoes, and taking proper safety precautions when using chemicals and other biological agents, and no food or drink allowed in the lab. Prior to being able to work in the lab each member is required to complete a laboratory safety course established by the university.  
<p>There are specific safety rules and regulations that our team follows to ensure our own safety. These include wearing long pants and closed toe water resistant shoes, and taking proper safety precautions when using chemicals and other biological agents, and no food or drink allowed in the lab. Prior to being able to work in the lab each member is required to complete a laboratory safety course established by the university.  
Our bio-brick parts do not pose health risks and are only used within the lab.
Our bio-brick parts do not pose health risks and are only used within the lab.
-
We are working with BSL1 organisms in our lab namely E.Coli K12 and DH5alpha, with N. Multiformis as our chassis. We also have used BSL2 organism, Psuedomonas Aeroginosa, to use as template in amplification of genes for denitrification.  
+
We are working with BSL-1 organisms in our lab, namely <i>E. coli</i> K12 and DH5α and our chassis <i>N. multiformis</i>. We also have used a BSL-2 organism, <i>Psuedomonas aeroginosa</i> PAO1, to provide template DNA for cloning the genes necessary for denitrification.  
Dr. Julianne Grose, our instructor, has received BYU approval to work with BSL-2 reagents. Our laboratory room has also been approved for BSL-2 lab work, with notification posted outside the room. We have followed current safety measures for disposing of biological samples in biohazard waste as well as cleaning glassware and desktops with bleach/ethanol.</p>
Dr. Julianne Grose, our instructor, has received BYU approval to work with BSL-2 reagents. Our laboratory room has also been approved for BSL-2 lab work, with notification posted outside the room. We have followed current safety measures for disposing of biological samples in biohazard waste as well as cleaning glassware and desktops with bleach/ethanol.</p>
-
<p>We have each been trained on proper laboratory safety guidelines and follow these rules in our lab. We have chosen to use a BSL1 chassis and are performing experiments withing a BSL1 strains of E.Coli (K12, DH5alpha). We follow BYU's protocols for the disposal of biohazardous and chemical waste. The parts used in our project have little potential for malicious mis-use.</p>
+
<p>We have each been trained on proper laboratory safety guidelines and follow these rules in our lab. We have chosen to use a BSL1 chassis and are performing experiments withing a BSL-1 strains of <i>E. coli</i> (K12 DH5α). We follow BYU's protocols for the disposal of biohazardous and chemical waste. The parts used in our project have little potential for malicious mis-use.</p>
-
<p>If our project were to be commercially available for the improvement of water reclamation processes there is potential risk for the environment. Primarily our system should be contained withing the sewage treatment plant and specifically within the bioreactor portion of this process. There should be little to no room for escape of our microbe into the environment during this process. However, if it were to escape into the environment it could pose ecological concerns where our engineered N.Mulitformis could outcompete native soil bacterium.</p>
+
 
-
<p>To mitigate potential risks associated with our project we plan to knock out the SerA gene from N. Multiformis making it an auxotrophic bacterium. Where only the sewage treatment facility, where our bacterium would be put in use, would have the serine necessary for survival.</p>
+
<h3>What about the Environment? </h3>
<h3>What about the Environment? </h3>
-
 
+
<p>If our project is implemented in water reclamation facilities there is certainly a potential risk for the environment. Our system should be contained within the sewage treatment plant, specifically within the bioreactor, with little to no room for escape of our microbe into the environment during this process. Most water treatment facilities utilize UV exposure or filtration systems to remove microbes from the water before releasing it into the environment, at which stage our designed microbe would be eliminated. To mitigate potential risks of our modified <i>N. multiformis</i> escaping and proliferating in the environment, we plan to knock out the SerA gene, making it an auxotrophic bacterium that would require the high concentrations of serine found inside the bioreactor but absent from other waterways.</p>
-
<p> With the modifications we are making to <i>N multiformis</i>, the questions of containment and adversely affecting the environment downstream of the waste water treatment plant came up.  If our bacteria were to get out into the environment, it would probably have better fitness than many competing bacteria with its new found CRISPR system and enhanced metabolism.  This could potentially be catastrophic for the affected ecosystems. In order to address this problem, we decided to make our modified <i>N multiformis</i> a serine auxotroph.  We identified the SerA gene as an essential gene for the biosynthesis of serine in the cell.  Because the bioreactor at the plant is rich in serine, but the effluent is serine deficient, it should be able to obtain all of its serine related needs.  But if it were to escape somehow, then the bacteria would die, being unable to synthesize its own serine, thus protecting the environment downstream of the facility.
+
<br></br>
<br></br>
<h3>The BYU iGEM Lab </h3>
<h3>The BYU iGEM Lab </h3>
-
 
<p> Our lab is located in the Life Sciences Building on Brigham Young University's main campus. Take a THIS SHOULD BE A HYPER LINK OR JUST A BUNCH OF PICTURES look. </p>  
<p> Our lab is located in the Life Sciences Building on Brigham Young University's main campus. Take a THIS SHOULD BE A HYPER LINK OR JUST A BUNCH OF PICTURES look. </p>  

Revision as of 19:38, 17 October 2014

BYU 2014 Safety

Click here to edit this page!

Home Team Official Team Profile Project Parts Modeling Notebook Safety Attributions

Safety Overview

Organisms Used

Our team has received safety training according to requirements as set by Brigham Young University's College of Life Sciences. Our training encompassed topics including:OSHA laboratory standard, material data safety sheets, chemical safety including security disposal of hazardous materials, wearing of proper protective clothing, housekeeping, laboratory hazard signs and the NFPA hazard warning system for labels, proper labeling of primary and secondary chemical containers, proper storage of chemicals including chemical compatibility, temperature requirements and secondary containment, disposal of regulated waste, minimizing exposure to hazardous chemicals including engineering controls, administrative controls, and personal protective equipment, proper use of laboratory hoods, chemical spills and proper cleanup. Our university's training requirements may be found here.

The insitutional biosafety committee at Brigham Young University is responsible for biological safety at our university. Our country's regulations that govern biosafety may be found here.

There are specific safety rules and regulations that our team follows to ensure our own safety. These include wearing long pants and closed toe water resistant shoes, and taking proper safety precautions when using chemicals and other biological agents, and no food or drink allowed in the lab. Prior to being able to work in the lab each member is required to complete a laboratory safety course established by the university. Our bio-brick parts do not pose health risks and are only used within the lab. We are working with BSL-1 organisms in our lab, namely E. coli K12 and DH5α and our chassis N. multiformis. We also have used a BSL-2 organism, Psuedomonas aeroginosa PAO1, to provide template DNA for cloning the genes necessary for denitrification. Dr. Julianne Grose, our instructor, has received BYU approval to work with BSL-2 reagents. Our laboratory room has also been approved for BSL-2 lab work, with notification posted outside the room. We have followed current safety measures for disposing of biological samples in biohazard waste as well as cleaning glassware and desktops with bleach/ethanol.

We have each been trained on proper laboratory safety guidelines and follow these rules in our lab. We have chosen to use a BSL1 chassis and are performing experiments withing a BSL-1 strains of E. coli (K12 DH5α). We follow BYU's protocols for the disposal of biohazardous and chemical waste. The parts used in our project have little potential for malicious mis-use.

What about the Environment?

If our project is implemented in water reclamation facilities there is certainly a potential risk for the environment. Our system should be contained within the sewage treatment plant, specifically within the bioreactor, with little to no room for escape of our microbe into the environment during this process. Most water treatment facilities utilize UV exposure or filtration systems to remove microbes from the water before releasing it into the environment, at which stage our designed microbe would be eliminated. To mitigate potential risks of our modified N. multiformis escaping and proliferating in the environment, we plan to knock out the SerA gene, making it an auxotrophic bacterium that would require the high concentrations of serine found inside the bioreactor but absent from other waterways.



The BYU iGEM Lab

Our lab is located in the Life Sciences Building on Brigham Young University's main campus. Take a THIS SHOULD BE A HYPER LINK OR JUST A BUNCH OF PICTURES look.

  • E. coli DH5α This is used for cloning and amplification of plasmids and as a preliminary chassis for our project.
  • E. coli S17R This is used for conjugation of our plasmid constructs into N. multiformis.
  • N. multiformis ATCC 25196 This is the intended chassis for our project.
  • P. aeroginosa PAO1 We are using this genome as a DNA template for the four denitrification genes in our system.
  • S. thermophilus LMD9 We are using this genome as a DNA template for the CRISPR genes.