Team:StanfordBrownSpelman/Amberless Hell Cell
From 2014.igem.org
(Difference between revisions)
Line 59: | Line 59: | ||
<div class="small-7 small-centered columns"><br><center><img src="https://static.igem.org/mediawiki/2014/a/a4/SBSiGEM_HellCell1.png"><br> | <div class="small-7 small-centered columns"><br><center><img src="https://static.igem.org/mediawiki/2014/a/a4/SBSiGEM_HellCell1.png"><br> | ||
- | <h6 | + | <h6><b>Figure 1.</b> Our approach to the Amberless Hell Cell. By recoding the UAG stop codon to translate into an amino acid, only cells that have a tRNA with the anticodon AUC will produce the complete protein. In our experiment, we used a tRNA that charges with leucine to translate the UAG codon.</h6> |
</div><br> | </div><br> | ||
<div class="row"> | <div class="row"> | ||
<div class="small-8 small-centered columns"> <h6> | <div class="small-8 small-centered columns"> <h6> | ||
- | We developed a novel approach for preventing horizontal transfer of engineered genes into the environment by inserting a UAG-leucine tRNA, and using UAG for leucine in all of the inserted, engineered genes. Because these genes will not be read correctly in other organisms (the UAG will be read as stop, so proteins will be truncated), the engineered genes will not have any effect in naturally-occurring bacteria in the environment. Our project will involve synthesizing UAG-leucine coded versions of the Hell Cell genes and inserting them into the amberless <i>E. coli</i> strain, along with a UAG-leucine tRNA [2]. This will create a strain of bacteria that is both resilient and safe for environmental applications, for example as a biosensor added to the BCOAc membrane using the biotin/streptavidin interaction mentioned above. | + | We developed a novel approach for preventing horizontal transfer of engineered genes into the environment by inserting a UAG-leucine tRNA, and using UAG for leucine in all of the inserted, engineered genes. Because these genes will not be read correctly in other organisms (the UAG will be read as stop, so proteins will be truncated), the engineered genes will not have any effect in naturally-occurring bacteria in the environment. We call this strategy <b>Codon Security</b>. Our project will involve synthesizing UAG-leucine coded versions of the Hell Cell genes and inserting them into the amberless <i>E. coli</i> strain, along with a UAG-leucine (supP) tRNA [2]. This will create a strain of bacteria that is both resilient and safe for environmental applications, for example as a biosensor added to the BCOAc membrane using the biotin/streptavidin interaction mentioned above. |
<br> | <br> | ||
</h6> | </h6> | ||
Line 81: | Line 81: | ||
<div id="subheader" class="small-8 small-centered columns"> | <div id="subheader" class="small-8 small-centered columns"> | ||
<h5><center>Approach & Methods</h5> | <h5><center>Approach & Methods</h5> | ||
- | <h6>We were interested in two avenues of research. The first was test our hypothesis that the amberless chassis would enable us to create an orthogonal protein expression system that would not function properly in other bacteria. By replacing | + | <h6>We were interested in two avenues of research. The first was test our hypothesis that the amberless chassis would enable us to create an orthogonal protein expression system that would not function properly in other bacteria. By replacing 2-4 leucines with TAG stops in a gene, we make it such that an organism that does not express the supP tRNA, which translates UAG into Leucine, produces a truncated product. We have named this novel system <b>Codon Security</b>. The second goal of the project was to apply Codon Security to the Hell Cell genes from our 2012 team in order to limit the horizontal transfer of resistance genes when using synthetic biology in the environment. Applying the Leucine->Stop modifications to the Hell Cell genes and transforming them into amberless cells, we could make the world's first <b>Amberless Hell Cell</b>. |
</h6> </div></div> | </h6> </div></div> |
Revision as of 16:53, 17 October 2014
Amberless Hell Cell
For an application of synthetic biology where live, genetically-modified cells will come in direct contact with the environment, such as biological sensors on a UAV, two concerns must be addressed. First, the cells need to be resistant to widely-varying conditions that may be present in the environment. Second, in order to address ethical concerns about releasing genetically-modified organisms, it is desirable to reduce horizontal gene transfer from the engineered cells into cells naturally present in the environment. In order to solve both of these issues, and therefore to create an ideal chassis for synthetic biology in environmental applications, we will combine two research goals:
1. The "Hell Cell" project by the 2012 Stanford-Brown iGEM team isolated genes from extremophile bacterial species and inserted them into Escherichia coli, in order to create bacteria that are resistant to extremes in pH, temperature, and moisture. We sought to further characterize, improve, and search for new resistance genes that would help our chassis survive in earth and space applications.
2. The Church Lab at Harvard Medical School in 2013 created a strain of E. coli (C321.ΔA) in which all 321 instances of the UAG ("Amber") stop codon in the E. coli genome had been replaced with the UAA stop codon [1]. Release factor 1, which terminates translation at UAG, was also removed. With this system, the Church group incorporated artificial amino acids with a tRNA that recognizes UAG as its codon.
1. The "Hell Cell" project by the 2012 Stanford-Brown iGEM team isolated genes from extremophile bacterial species and inserted them into Escherichia coli, in order to create bacteria that are resistant to extremes in pH, temperature, and moisture. We sought to further characterize, improve, and search for new resistance genes that would help our chassis survive in earth and space applications.
2. The Church Lab at Harvard Medical School in 2013 created a strain of E. coli (C321.ΔA) in which all 321 instances of the UAG ("Amber") stop codon in the E. coli genome had been replaced with the UAA stop codon [1]. Release factor 1, which terminates translation at UAG, was also removed. With this system, the Church group incorporated artificial amino acids with a tRNA that recognizes UAG as its codon.