Team:ATOMS-Turkiye/asoMain

From 2014.igem.org

(Difference between revisions)
Line 97: Line 97:
                 <div><a href="https://2014.igem.org/Team:ATOMS-Turkiye/Modeling" class="tit">Modeling</a><a href="https://2014.igem.org/Team:ATOMS-Turkiye/Modeling" class="lnk"><span><strong>This year, we have carried out a mathematical modeling to understand how our promoter system would react against hypoxia to be able to treat heart problems. To learn more, click here.</strong></span></a>
                 <div><a href="https://2014.igem.org/Team:ATOMS-Turkiye/Modeling" class="tit">Modeling</a><a href="https://2014.igem.org/Team:ATOMS-Turkiye/Modeling" class="lnk"><span><strong>This year, we have carried out a mathematical modeling to understand how our promoter system would react against hypoxia to be able to treat heart problems. To learn more, click here.</strong></span></a>
-
                     <img src="https://static.igem.org/mediawiki/2014/thumb/6/6f/ATOMS-main-modeling.png/800px-ATOMS-main-modeling.png" alt="This year, we have carried out ..." width="210" height="220"><b>This year, we have carried out ....</b>
+
                     <img src="https://static.igem.org/mediawiki/2014/thumb/6/6f/ATOMS-main-modeling.png/685px-ATOMS-main-modeling.png" alt="This year, we have carried out ..." width="210" height="220"><b>This year, we have carried out ....</b>
                 </div>
                 </div>

Revision as of 16:06, 17 October 2014

Project Abstract

The condition which results in tissue death due to the poor conveyance of oxygen and other products vital for tissue cells and organs is described as tissue hypoxia or ischemia. Currently, ischemia and other related conditions such as heart attacks and strokes take the lead for being the number one cause of death worldwide. Moreover, the current treatment of ischemic attacks can intensify the damage in the tissue caused by hypoxia which is known as oxidative stress. This is due to the high oxygen concentration of the restored blood supply. Without a doubt, we need to view the bigger picture of the condition in order to solve this problem. In our project, we desire to build two different devices which work synergistically and fix these these two distinct situations, hypoxia and oxidative stress. Hence, we have decided to use "hypoxia inducible systems" and "reactive oxygen species (ROS) sensitive gene fragments". These two receptors will regulate the release of clot dissolving factors and antioxidant peptides synthesized by our engineered vessel cells. Through attaining encouraging in-vitro results, we aim to pave the way of this promising system into a lifesaving remedy.