Team:UFAM Brazil/Bioremediation

From 2014.igem.org

(Difference between revisions)
(Created page with "{{Template:Team:UFAM_Brazil/Main.css}} {{Team:UFAM_Brazil/menu}} <html> </body> <table class="mainTable"> <tr><td><h1>Bioremediator Device</h1></td></tr> <tr><td colspan="10" ...")
Line 12: Line 12:
<h3 align="center">Introduction </h3>
<h3 align="center">Introduction </h3>
-
<p>Bioaccumulation – “General term describing a process by which chemicals are taken up by an organism either directly from exposure to a contaminated medium or by consumption of food containing the chemical.” – U.S. Environmental Protection Agency, 2010 </p>
+
<p>In an uncontaminated environment, bacteria and other microorganisms are constantly using and sharing the same organic matter as source of energy for metabolism. However, what happens when an inorganic pollutant, as a metal is present on the environment? How could microorganisms survive? The answer is that some would die and others would be able to utilize the inorganic matter to survive without being affected by it. Through this, bioremediation arose: environmental problems solved by biological organisms. During bioremediation, microorganisms such as bacteria are able to use inorganic matter for oxi-reduction reaction, metabolizing the target inorganic pollutant. This specific and complex system is part of bacteria survival mechanism that became resistant to contamination. The generated products released by bacterial metabolism, are typically less toxic form of the initial pollutant.</p>
-
<p>In nature, exposure to toxic elements enabled microorganisms to develop a complex and efficient system, overcoming harsh environments. In response to heavy metal stress, organisms could use different defense systems. Such as binding proteins, like metallothioneins, with cysteines as binding sites, that could inactive it, a synthesis of some enzymes to reduce the metal and turn them less toxic.  One of the microbial processes to be used as a bioremediation tool to remove heavy metals, is bioaccumulation. Which is an active process that depends on microorganism’s metabolic energy. Organisms with unique abilities of metal absorption, accumulation or resistance can occur naturally. Alternatively, these systems can be used in genetic engineered bacteria and plants for remediation of polluted waters and soils.</p>
+
<p>One of the principal pollutant in Amazon region is mercury, known worldwide for its toxicity. Conventional methods have been used to remove Hg from contaminated environments. In general, laborious treatment systems, with high cost. In order to solve the environmental problem regarding to mercury, and make its bioremediation, we built a bioremediator using Escherichia coli DH5α through the protein mercury reductase (MerA).</p>
-
<p>In order to solve the environmental problem regarding to mercury, we built a bioaccumulator using Escherichia coli DH5α through the metal binding peptide (MBP).</p>
+
<h3 align="center"> Why Mercury reductase?</h3>
-
<h3 align="center">Why Metal Binding Peptide? </h3>
+
<p>Mercuric ion reductase (MerA) is a cytosolic enzyme, responsible to convert thiol-avid Hg2+ to its volatile form H0, using NADPH as electrons’ source. Mer A is an homodimeric enzyme, and has similar properties to pyridine nucleotide disulfide oxidoreductase family, by the presence of active site region with two cysteines, which confers the ability of redox-active disulfide/dithiol.</p>
-
<p>Metal ions act as relevant proteins cofactors, having an important role on protein activity regulation, where the amino acids sequence is fundamental for binding to metal ions. The appropriate protein configuration is ensures the binding with metals, and is pretty selective according to its nature. Metal Binding Peptides are low weight molecular proteins, similarly to metallothioneins, with high cysteine content which confers to bacteria the ability to adhere to mercury.</p>
+
<p>However, differently from other members of this protein family, MerA has two unique regions that prevent inhibition by Hg. The C-terminal region of one monomer, containing two cysteines is close to the redox-active cysteines of the other monomer, and might be important to bind Hg to the active site. Its N-terminal region could be involved in capturing Hg and handing it to the catalytic nucleus, and then reduced by electrons provided by the bound NADPH. MerA is the key for mercury remediation for its characteristic to reduce Hg2+ into H0, making it a prospective protein to use in bioreactors to polluted water treatment stations.</p>
<h3 align="center">Our construction (How it works?)</h3>
<h3 align="center">Our construction (How it works?)</h3>
-
<p>To develop our bioaccumulator in Escherichia coli DH5-alpha, we designed a biobrick device to bind and inactivate Hg. It is composed by two parts: Essential biobrick (BBa_K1355001) attached to the MBP biobrick (BBa_K346004) that was synthesized by iGEM Peking 2010. As described by the team, this MBP design was based on the tandem of two metal binding domains to make a high performance and less energy consuming metal binding peptide. The idea came from the high similarity of the C-terminal metal binding domain with MerR family TFs, which indicates a similar metal recognition mechanism and metal-protein complex structure. </p>
+
<p>To develop a bioremediator, we designed a biobrick device to express MerA protein in mercury’s occurrence. The Mercury ions’ bioremediator device biobrick (BBa_K1355004) is composed by mer bidirectional promoter (BBa_K1355001) attached to the MerA translational unit (BBa_K1355000). It has dual function: A) In reverse: MerR protein regulator transcription; and B) In forward: transcription of MerP - MerT - MerA proteins, as represented below:</p>
-
<p>The Mercury ions accumulator device biobrick (BBa_K1355003) has dual function: A) In reverse: transcription of MerR regulator protein; and B) In forward: transcription of MerP - MerT - Metal Binding Peptide proteins, as represented below:</p>
+
<p align="center"><img src="https://static.igem.org/mediawiki/2014/2/2b/UFAM_BRAZIL_2014_biorem1.png" width="600"></p>
-
<p align="center"><img src="https://static.igem.org/mediawiki/2014/2/25/UFAM_BRAZIL_2014_bioac1.png" width="600"></p>
+
<p>In absence of mercury, MerR forms a MerR-promoter-operator complex, preventing RNA polymerase to recognize the promoter, consequently, mRNA for MerPT and MerA will not be transcript. In presence of Hg2+, MerR protein binds to this element and dissociates from the promoter-operator complex, allowing MerPT and MerA expression, as represented below:</p>
-
<p>In absence of mercury, MerR forms a MerR-promoter-operator complex, preventing RNA polymerase to recognize the promoter, consequently, messengers RNA for MerPT and MBP will not be transcript. In presence of Hg2+, MerR protein binds to this element and dissociates from the promoter-operator complex, allowing MerPT and MBP expression, as represented below:</p>
+
<p align="center"><img src="https://static.igem.org/mediawiki/2014/8/8e/UFAM_BRAZIL_2014_biorem2.png" width="600"></p>
-
<p align="center"><img src="https://static.igem.org/mediawiki/2014/4/49/UFAM_BRAZIL_2014_bioac2.png" width="600"></p>
 
<h3 align="center">Experiments and Results</h3>
<h3 align="center">Experiments and Results</h3>
-
<p>The experiment for Hg bioaccumulation was made according to the protocol “Quantification of Mercury bio accumulated by metal binding peptide (MBP) in recombinant DH5-alpha in different Hg concentrations”. DH5-alpha transformed with BBa_K1355003 was inoculated in LM (LB with low concentration of NaCl) liquid medium with chloramphenicol and grew until the optical density was 0.4 to 0.6abs (measured on spectrophotometer at 600 nm wavelength). After cell growth, an aliquot of 400μl was taken and distributed in 4 eppendorf tubes (1.5ml) and then added mercury chloride in order to achieve the concentrations: 50 ppb, 100 ppb, 250 ppb and 500 ppb. The samples were incubated at 37°C on shaker. We collected each eppendorf tube at time 1 (01:30 hours of incubation) and time 2 (03:00 hours of incubation). After the designated time, both were centrifuged at 12000g for 3 minutes and the supernatant recovered (LM medium). We washed the pellet with TN Buffer (Nacl 0.15M + Tris HCl 10mM) and then re-suspended with 400μl of the same buffer. To measure bio accumulated Hg, we need to quantify the Hg inside and outside of bacterium after the incubation/exposure time. So we collected and measured the amount of Hg in LM medium supernatant recovered and bacterium re-suspended in TN Buffer. For this we used the equipment Direct Mercury Analyzer (DMA-80). As a control to normal Hg bio accumulated in bacteria, we used DH5-alpha transformed with BBa_K1355002 (Hg bio detector device) which does not present the metal binding peptide. We also measured the Optical Density of each sample. </p>
+
<p>The experiment for Hg bioremediation was made according to the protocol “Cell growth quantification of mercury resistant Escherichia coli DH5α at differents Hg concentrations by Optical Density”. </p>
-
<p>The graph represented on Figure 1 shows the amount of Hg in supernatant (LM medium recovered) and in bacterium (DH5-alpha transformed with BBa_K1355003) at the time 1 (01:30 hours of incubation); </p>
+
<p>DH5-alpha transformed with BBa_K1355004 was inoculated in LM (LB with low concentration of NaCl) liquid medium with 0.05μg/ml of mercury chloride and 34μg/ml of chloramphenicol. The inoculum was incubated in shaker overnight at 37°C. After cell growth, we measured Optical Density (O.D.) of the cell culture in spectrophotometer at 600 nm wavelength. A standard quantity aliquot of bacterial suspension was taken in six falcons (50ml) with 10 ml of LM liquid medium and then added mercury chloride in order to achieve the concentrations: 0μg/ml, 1 μg/ml; 2.5 μg/ml; 5 μg/ml; 10μg/ml; 20 μg/ml. The samples were incubated at 37°C on shaker. We collected each sample at the given times, 1 (02:30 hours of incubation), time 2 (04:30 hours of incubation), time 3 (06:30 hours of incubation), time 4 (17 hours of incubation), time 5 (24 hours of incubation) to measure O.D. on spectrophotometer. As control, we used DH5-alpha transformed with BBa_K1355002 (Hg bio detector device) which does not present coding regions for the mercuric ion reductase. We also measured Optical Density of each sample. After cell growth measurement, the samples were frozen to subsequently quantification of Hg remediated by the Mercury Bacter. </p>
-
<p align="center"><img src="https://static.igem.org/mediawiki/2014/6/68/UFAM_BRAZIL_2014_bioac3.png" width="600"></p>
+
<p>The graph represented on Figure 1 and Figure 2 shows Cell growth of Mercury Bacter and of the control bacteria in different Hg concentrations in function of time, respectively; </p>
-
<h3 align="center">Figure 1: Metal binding peptide activity after 01:30 hours of incubation in five given concentrations of mercury chloride: 50 ppb, 100 ppb, 250 ppb e 500 ppb</h3>
+
<p align="center"><img src="https://static.igem.org/mediawiki/2014/0/09/UFAM_BRAZIL_2014_biorem3.png" width="600"></p>
-
<p>It can be observed that the amount of Hg in the Mercury Bacter bioaccumulator increases according to the raise of Hg concentration. The amount of Hg increased 22 times comparing the 50 ppb sample with 500 ppb sample. In the 500 ppb Hg concentration the control bacterium just accumulated 2 per cent of total Hg amount. On the contrary, Mercury Bacter accumulated 40 per cent of total Hg amount in just 01:30 hours of incubation!!!  The data keeps raising on the time 2! Check it out! </p>
+
<h3 align="center">Figure 1: Cell growth of Mercury Bacter in different Hg concentrations in function of time;</h3>
-
<p>The graph represented on Figure 2 shows the amount of Hg in supernatant (LM medium recovered) and in bacterium (DH5-alpha transformed with BBa_K1355003) at the time 2 (03:00 hours of incubation); </p>
 
-
<p align="center"><img src="https://static.igem.org/mediawiki/2014/7/7f/UFAM_BRAZIL_2014_bioac4.png" width="600"></p>
+
<p align="center"><img src="https://static.igem.org/mediawiki/2014/9/96/UFAM_BRAZIL_2014_biorem4.png" width="600"></p>
-
<h3 align="center">Figure 2: Metal binding peptide activity after 03:00 hours of incubation in five given concentrations of mercury chloride: 50 ppb, 100 ppb, 250 ppb e 500 ppb.  </h3>
+
-
<p>It can be observed that the amount of Hg in Mercury Bacter bioaccumulator, increases according to the time of incubation. The amount of Hg increased 30 times comparing the 50 ppb sample with 500 ppb sample. In the 500 ppb Hg concentration the control bacterium just accumulated 4% of total Hg amount. Instead, Mercury Bacter accumulated 58% of total Hg amount in just 03:00 hours of incubation!!!  </p>
+
<h3 align="center">Figure 2: Cell growth of control bacteria in different Hg concentrations in function of time;</h3>
-
<p>The data can be analyzed individually in each concentrations samples as shown in graphs represented in the figures below: </p>
+
-
<p align="center"><img src="https://static.igem.org/mediawiki/2014/3/3b/UFAM_BRAZIL_2014_bioac5.png" width="600"></p>
 
-
<h3 align="center">Figure 3: Metal binding peptide activity at 50 ppb in time 1 and 2;</h3>
 
-
<p align="center"><img src="https://static.igem.org/mediawiki/2014/8/82/UFAM_BRAZIL_2014_bioac6.png" width="600"></p>
+
<p>Comparing the graphs shown on figure 1 and 2, it can be observed that the biobrick BBa_K135504 provided resistance to high Hg concentrations. Control bacteria did not present resistance to Hg concentration equal or higher to 1 ppm. On the contrary, Mercury Bacter grew up even in 10 ppm Hg concentrations. Interestingly, at the concentration of 10 ppm Mercury Bacter needed 24 hours to exhibit increase in cell growth, and after 48 hours it maintained the same OD, unlike the others. At 1 ppm, 2.5 ppm and 5 ppm Mercury Bacter performed an overwhelming cellular growth after 24 hours of exposure to Hg, reaching approximately the same cellular growth as the non-exposed bacteria!!</p>
-
<h3 align="center">Figure 4: Metal binding peptide activity at 100 ppb in time 1 and 2;</h3>
+
-
<p align="center"><img src="https://static.igem.org/mediawiki/2014/5/50/UFAM_BRAZIL_2014_bioac7.png" width="600"></p>
+
<p>The graph represented on Figure 3 compares Hg concentration in LM medium after 48 hours of experiment, between medium with bacteria used as control and engineered Mercury Bacter. </p>
-
<h3 align="center">Figure 5: Metal binding peptide activity at 250 ppb in time 1 and 2;</h3>
+
-
<p align="center"><img src="https://static.igem.org/mediawiki/2014/5/50/UFAM_BRAZIL_2014_bioac8.png" width="600"></p>
+
<p align="center"><img src="https://static.igem.org/mediawiki/2014/2/2e/UFAM_Brazil_2014_Biorem5_CERTA.png" width="600"></p>
-
<h3 align="center">Figure 6: Metal binding peptide activity at 500 ppb in time 1 and 2;</h3>
+
<h3 align="center">Figure 3: Hg concentration in LM medium after 48 hours of cell growth in control bacteria and in the genetically engineered Mercury Bacter.
 +
</h3>
 +
<p>In the graph above it can be observed that our super Mercury Bacter bioremediated! In action, Mercury Bacter reduced 72% of the mercury levels, in comparison to control at the sample 5 ppm! In 1 ppm,  Even though on 10 ppm concentration, where bacteria had a slow growth rate only after 24 hours, it bioremediated 48.02%! These results demonstrate  our constructions’ efficiency, both for biobrick BBa_K1355001 as a promoter regulated by MerR protein and to BBa_K1355000 as MerA encoding gene! </p>
<h3 align="center">References </h3>
<h3 align="center">References </h3>
-
<p>Gupta, R. K., Dobritsa, S. V., Stiles, C. A., Essington, M. E., Liu, Z., Chen, C. H., ... & Mullin, B. C. (2002). Metallohistins: A new class of plant metal-binding proteins. Journal of protein chemistry, 21(8), 529-536.</p>
+
<p>Cobbett, C. S. (2001). Heavy metal detoxification in plants: Phytochelatin biosynthesis and function. Iubmb Life, 51(3), 183-188.</p>
-
<p>Mejáre, M., & Bülow, L. (2001). Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. TRENDS in Biotechnology, 19(2), 67-73.</p>
+
<p>Mathema, V. B., Thakuri, B. C., & Sillanpää, M. (2011). Bacterial mer operon-mediated detoxification of mercurial compounds: a short review. Archives of microbiology, 193(12), 837-844.</p>
-
<p>Deng, X., & Wilson, D. (2001). Bioaccumulation of mercury from wastewater by genetically engineered Escherichia coli. Applied microbiology and biotechnology, 56(1-2), 276-279.</p>
+
<p>Kumar, S. (2013). Studies on mercury transporter merT and mercury reductase merA proteins.</p>
-
<p>Licini, G., & Scrimin, P. (2003). Metal‐Ion‐Binding Peptides: From Catalysis to Protein Tagging. Angewandte Chemie International Edition, 42(38), 4572-4575.</p>
+
</td></tr>
</td></tr>

Revision as of 15:00, 17 October 2014

Bioremediator Device

Introduction

In an uncontaminated environment, bacteria and other microorganisms are constantly using and sharing the same organic matter as source of energy for metabolism. However, what happens when an inorganic pollutant, as a metal is present on the environment? How could microorganisms survive? The answer is that some would die and others would be able to utilize the inorganic matter to survive without being affected by it. Through this, bioremediation arose: environmental problems solved by biological organisms. During bioremediation, microorganisms such as bacteria are able to use inorganic matter for oxi-reduction reaction, metabolizing the target inorganic pollutant. This specific and complex system is part of bacteria survival mechanism that became resistant to contamination. The generated products released by bacterial metabolism, are typically less toxic form of the initial pollutant.

One of the principal pollutant in Amazon region is mercury, known worldwide for its toxicity. Conventional methods have been used to remove Hg from contaminated environments. In general, laborious treatment systems, with high cost. In order to solve the environmental problem regarding to mercury, and make its bioremediation, we built a bioremediator using Escherichia coli DH5α through the protein mercury reductase (MerA).

Why Mercury reductase?

Mercuric ion reductase (MerA) is a cytosolic enzyme, responsible to convert thiol-avid Hg2+ to its volatile form H0, using NADPH as electrons’ source. Mer A is an homodimeric enzyme, and has similar properties to pyridine nucleotide disulfide oxidoreductase family, by the presence of active site region with two cysteines, which confers the ability of redox-active disulfide/dithiol.

However, differently from other members of this protein family, MerA has two unique regions that prevent inhibition by Hg. The C-terminal region of one monomer, containing two cysteines is close to the redox-active cysteines of the other monomer, and might be important to bind Hg to the active site. Its N-terminal region could be involved in capturing Hg and handing it to the catalytic nucleus, and then reduced by electrons provided by the bound NADPH. MerA is the key for mercury remediation for its characteristic to reduce Hg2+ into H0, making it a prospective protein to use in bioreactors to polluted water treatment stations.

Our construction (How it works?)

To develop a bioremediator, we designed a biobrick device to express MerA protein in mercury’s occurrence. The Mercury ions’ bioremediator device biobrick (BBa_K1355004) is composed by mer bidirectional promoter (BBa_K1355001) attached to the MerA translational unit (BBa_K1355000). It has dual function: A) In reverse: MerR protein regulator transcription; and B) In forward: transcription of MerP - MerT - MerA proteins, as represented below:

In absence of mercury, MerR forms a MerR-promoter-operator complex, preventing RNA polymerase to recognize the promoter, consequently, mRNA for MerPT and MerA will not be transcript. In presence of Hg2+, MerR protein binds to this element and dissociates from the promoter-operator complex, allowing MerPT and MerA expression, as represented below:

Experiments and Results

The experiment for Hg bioremediation was made according to the protocol “Cell growth quantification of mercury resistant Escherichia coli DH5α at differents Hg concentrations by Optical Density”.

DH5-alpha transformed with BBa_K1355004 was inoculated in LM (LB with low concentration of NaCl) liquid medium with 0.05μg/ml of mercury chloride and 34μg/ml of chloramphenicol. The inoculum was incubated in shaker overnight at 37°C. After cell growth, we measured Optical Density (O.D.) of the cell culture in spectrophotometer at 600 nm wavelength. A standard quantity aliquot of bacterial suspension was taken in six falcons (50ml) with 10 ml of LM liquid medium and then added mercury chloride in order to achieve the concentrations: 0μg/ml, 1 μg/ml; 2.5 μg/ml; 5 μg/ml; 10μg/ml; 20 μg/ml. The samples were incubated at 37°C on shaker. We collected each sample at the given times, 1 (02:30 hours of incubation), time 2 (04:30 hours of incubation), time 3 (06:30 hours of incubation), time 4 (17 hours of incubation), time 5 (24 hours of incubation) to measure O.D. on spectrophotometer. As control, we used DH5-alpha transformed with BBa_K1355002 (Hg bio detector device) which does not present coding regions for the mercuric ion reductase. We also measured Optical Density of each sample. After cell growth measurement, the samples were frozen to subsequently quantification of Hg remediated by the Mercury Bacter.

The graph represented on Figure 1 and Figure 2 shows Cell growth of Mercury Bacter and of the control bacteria in different Hg concentrations in function of time, respectively;

Figure 1: Cell growth of Mercury Bacter in different Hg concentrations in function of time;

Figure 2: Cell growth of control bacteria in different Hg concentrations in function of time;

Comparing the graphs shown on figure 1 and 2, it can be observed that the biobrick BBa_K135504 provided resistance to high Hg concentrations. Control bacteria did not present resistance to Hg concentration equal or higher to 1 ppm. On the contrary, Mercury Bacter grew up even in 10 ppm Hg concentrations. Interestingly, at the concentration of 10 ppm Mercury Bacter needed 24 hours to exhibit increase in cell growth, and after 48 hours it maintained the same OD, unlike the others. At 1 ppm, 2.5 ppm and 5 ppm Mercury Bacter performed an overwhelming cellular growth after 24 hours of exposure to Hg, reaching approximately the same cellular growth as the non-exposed bacteria!!

The graph represented on Figure 3 compares Hg concentration in LM medium after 48 hours of experiment, between medium with bacteria used as control and engineered Mercury Bacter.

Figure 3: Hg concentration in LM medium after 48 hours of cell growth in control bacteria and in the genetically engineered Mercury Bacter.

In the graph above it can be observed that our super Mercury Bacter bioremediated! In action, Mercury Bacter reduced 72% of the mercury levels, in comparison to control at the sample 5 ppm! In 1 ppm, Even though on 10 ppm concentration, where bacteria had a slow growth rate only after 24 hours, it bioremediated 48.02%! These results demonstrate our constructions’ efficiency, both for biobrick BBa_K1355001 as a promoter regulated by MerR protein and to BBa_K1355000 as MerA encoding gene!

References

Cobbett, C. S. (2001). Heavy metal detoxification in plants: Phytochelatin biosynthesis and function. Iubmb Life, 51(3), 183-188.

Mathema, V. B., Thakuri, B. C., & Sillanpää, M. (2011). Bacterial mer operon-mediated detoxification of mercurial compounds: a short review. Archives of microbiology, 193(12), 837-844.

Kumar, S. (2013). Studies on mercury transporter merT and mercury reductase merA proteins.