Team:York/Cake

From 2014.igem.org

(Difference between revisions)
Line 11: Line 11:
     <link href="https://2014.igem.org/Team:York/newCSS.css?action=raw&amp;ctype=text/css" type="text/css" rel="stylesheet">
     <link href="https://2014.igem.org/Team:York/newCSS.css?action=raw&amp;ctype=text/css" type="text/css" rel="stylesheet">
<link href="//maxcdn.bootstrapcdn.com/font-awesome/4.2.0/css/font-awesome.min.css" rel="stylesheet">
<link href="//maxcdn.bootstrapcdn.com/font-awesome/4.2.0/css/font-awesome.min.css" rel="stylesheet">
-
<style>
 
-
#footer-box{
 
-
background-color: transparent;
 
-
border: none;
 
-
}
 
-
 
-
#footer ul {
 
-
font-weight: 400;
 
-
}
 
-
 
-
</style>
 
   </head>
   </head>
Line 30: Line 19:
     <!-- Include all compiled plugins (below), or include individual files as needed -->
     <!-- Include all compiled plugins (below), or include individual files as needed -->
     <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.2.0/js/bootstrap.min.js"></script>
     <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.2.0/js/bootstrap.min.js"></script>
-
    <!-- Script necessary for background slider -->
 
-
    <script src="js/modernizr.custom.86080.js"></script>
 
-
<ul class="cb-slideshow">
+
-
            <li><span>Image 01</span></li>
+
<div class="navbar navbar-inverse navbar-fixed-top">
-
            <li><span>Image 02</span></li>
+
<div class="container">
-
            <li><span>Image 03</span></li>
+
-
            <li><span>Image 04</span></li>
+
<a href="https://2014.igem.org/Team:York" class="navbar-brand"><img src="https://static.igem.org/mediawiki/2014/6/6a/UoYiGEMlogo-noback.png" id="topyorklogo"></a>
-
            <li><span>Image 05</span></li>
+
-
            <li><span>Image 06</span></li>
+
<button class="navbar-toggle" data-toggle="collapse" data-target=".navHeaderCollapse">
-
            <li><span>Image 07</span></li>
+
<span class="icon-bar"></span>
-
            <li><span>Image 08</span></li>
+
<span class="icon-bar"></span>
-
        </ul>
+
<span class="icon-bar"></span>
-
 
+
</button>
-
    <div class="container">
+
-
    <div class="jumbotron text-center home">
+
<div class="collapse navbar-collapse navHeaderCollapse">
-
        <div class="inner">
+
-
            <div class="logo-round">
+
<ul class="nav navbar-nav navbar-right">
-
                <img src="https://static.igem.org/mediawiki/2014/6/6a/UoYiGEMlogo-noback.png" class="img-responsive center">
+
<li><a href="https://2014.igem.org/Team:York">Home</a></li>
-
            </div>
+
<li><a href="https://2014.igem.org/Team:York/Team">Team</a></li>
-
            <h1>Hello! We're from the</h1>
+
<li class="dropdown active">
-
                        <a href="http://www.york.ac.uk/biology/" target="_blank"><img src="https://static.igem.org/mediawiki/2014/5/5e/Uoylogo-white.png" class="img-responsive center" style="max-width:600px; margin-top:30px; margin-bottom:30px; margin-left:auto; margin-right:auto;"></a>
+
                                                <a href="#" class="dropdown-toggle" data-toggle="dropdown">Project
-
            <hr>
+
<b class="caret"></b></a>
-
            <p>Our project EcoCADMUS (E. Coli CAdmium DecontaMination Universal System) targets industrial and mineral processing waste-water contamination by heavy metals and sulfates. EcoCADMUS provides a safe and selective way to remove Cadmium Sulfide from waste water using Synthetic Biology.
+
                                                <ul class="dropdown-menu">
 +
                                                        <li><a href="https://2014.igem.org/Team:York/Project">Background</a></li>
 +
                                                        <li class="active"><a href="https://2014.igem.org/Team:York/Constructs">Constructs</a></li>
 +
                                                        <li><a href="https://2014.igem.org/Team:York/Application">Practical Application</a></li>
 +
                                                </ul>
 +
                                        </li>
 +
<li class="dropdown">
 +
<a href="#" class="dropdown-toggle" data-toggle="dropdown">Human Practices
 +
<b class="caret"></b></a>
 +
<ul class="dropdown-menu">
 +
<li> <a href="https://2014.igem.org/Team:York/Sustainability">Sustainability</a></li>
 +
<li><a href="https://2014.igem.org/Team:York/SocialImpacts">Social Impacts</a></li>
 +
<li><a href="https://2014.igem.org/Team:York/Surveys">Surveys</a></li>
 +
<li><a href="https://2014.igem.org/Team:York/RN">Researchers Night</a></li>
 +
                                                        <li><a href="https://2014.igem.org/Team:York/Environment">Environmental Impact</a></li>
 +
</ul>
 +
</li>
 +
<li class="dropdown">
 +
<a href="#" class="dropdown-toggle" data-toggle="dropdown">Lab Work
 +
<b class="caret"></b></a>
 +
<ul class="dropdown-menu">
 +
<li><a href="https://2014.igem.org/Team:York/Notebook">Notebook</a></li>
 +
<li><a href="https://2014.igem.org/Team:York/Protocols">Protocols</a></li>
 +
                                                        <li><a href="https://2014.igem.org/Team:York/Characterisation">Characterisation</a></li>
 +
</ul>
 +
</li>
 +
<li><a href="https://2014.igem.org/Team:York/Sponsors">Sponsors</a></li>
 +
<li><a href="https://twitter.com/iGEMyork" target="_blank"><i class="fa fa-twitter fa-lg"></i></a></li>
 +
                                        <li><a href="mailto:igemyork2014@gmail.co.uk" target="_blank"><i class="fa fa-envelope fa-lg"></i></a></li>
 +
</ul>
 +
 +
</div>
 +
 +
</div>
 +
</div><br>
 +
<!--  THE TOP HAS ENDED. THE REST OF THE PAGE BEGINS.  -->
 +
      <div class="container">
 +
<div class="jumbotron">
 +
<div class="row">
 +
<div class="col-lg-8">
 +
<h1>Constructs</h1>
 +
<hr>
 +
<img class="img-responsive img-max-650" src="https://static.igem.org/mediawiki/2014/a/ae/York_Constructs.jpg">
<br><br>
<br><br>
-
<a href="https://twitter.com/iGEMyork" target="_blank"><i class="fa fa-twitter fa-lg"></i></a> &nbsp; &nbsp; &nbsp; <a href="mailto:igemyork2014@gmail.co.uk" target="_blank"><i class="fa fa-envelope fa-lg"></i></a>
+
<div class="col-md-3">
 +
<ul class="nav nav-tabs" role="tablist" id="myTab">
 +
    <li class="active"><a href="#one" role="tab" data-toggle="tab">pYodA</a></li>
 +
    <li><a href="#two" role="tab" data-toggle="tab">NRAMP</a></li>
 +
    <li><a href="#three" role="tab" data-toggle="tab">CysP</a></li>
 +
    <li><a href="#four" role="tab" data-toggle="tab">SpPCS</a></li>
 +
    <li><a href="#five" role="tab" data-toggle="tab">Gsh1*</a></li>
 +
    <li><a href="#six" role="tab" data-toggle="tab">CysE*</a></li>
 +
</ul>
 +
</div>
 +
 
 +
<div class="tab-content col-md-9">
 +
<div class="tab-pane active" id="one" class="collapse">
 +
 
 +
<h2>pYodA</h2>
 +
<p>
 +
<b>Name:</b> pYodA (ZinTp) <br>
 +
<b>Organism:</b> <i>Escherichia Coli</i> <br>
 +
<b>Normal Function:</b> pYodA is a cadmium-induced promoter that activates the yodA(zinT) gene, leading to the production of ZinT metal-binding protein.<br>
 +
<b>Aim:</b> We are using pYodA in an alternative way; to regulate the expression of the CysP gene (sulfate transporter) and the NRAMP gene (Cadmium transporter). Due to using pYodA, the expression of these two genes will be regulated by the concentration of Cadmium in the extracellular environment. The over-production of Cysteine will only occur when the concentration of Cadmium reaches the sensitivity threshold of pYodA. Due to cysteine production being both energetically demanding and toxic at high concentrations, we do not want these genes to be expressed constitutively. <br>
 +
<b>Characterisation:</b> In order to characterise pYodA, we will couple it with a GFP gene. This will allow us to calculate the sensitivity threshold of pYodA and measure the amount of cadmium that can be chelated at various concentrations. <br>
 +
<b>Literature:</b>
 +
<ol>
 +
<li>http://mic.sgmjournals.org/content/148/12/3801.long</li>
 +
<li>http://www.uniprot.org/uniprot/F4VWH2</li>
 +
<li>http://sbkb.org/uid/F4VWH2/uniprot#structures</li>
 +
<li>http://www.jbc.org/content/278/44/43728</li>
 +
<li>http://biocyc.org/ECOLI/NEW-IMAGE?type=GENE&object=G7061</li>
 +
</ol>
</p>
</p>
-
                <a href="https://2014.igem.org/Team:York/Project">
+
</div>
-
                    <button type="button" class="btn btn-primary">Learn More!</button>
+
 
-
                </a>
+
<div class="tab-pane" id="two" class="collapse">
-
        </div>
+
<h2>NRAMP</h2>
-
    </div>
+
<p>
-
<div class="row home-row">
+
<b>Gene:</b> mntH<br>
-
<button class="col-md-4 btn btn-primary home-panel">
+
<b>Organism:</b> <i>Escherichia Coli</i><br>
-
<a href="https://2014.igem.org/Team:York/Team">
+
<b>Protein:</b> NRAMP<br>
-
<h3>Our Team</h3>
+
<b>Function:</b> NRAMP is a membrane divalent metal-ion transporter. In addition to iron and manganese, it also transports Cd ions into the cell.<br>
-
<img class="img-responsive" src="https://static.igem.org/mediawiki/2014/4/44/York_TeamHomePage.jpg">
+
<b>Aim:</b> We want to use the endogenous transporter NRAMP to take up the cadmium from the environment. The cadmium will then activate pYoda and set off the phytochelatin synthesis process.<br>
-
<p>Come and meet our lovely team!<br>We've been working hard (mostly!) on our project all over Summer.</p>
+
<b>Expression:</b> We can run assays measuring the concentration of cadmium in the environment. If NRAMP is active, the concentration of cadmium should decrease.<br></p></div>
-
</a>
+
 
-
</button>
+
<div class="tab-pane" id="three" class="collapse">
-
<button class="col-md-4 btn btn-primary home-panel">
+
 
-
<a href="https://2014.igem.org/Team:York/Constructs">
+
<h2>CysP</h2>
-
<h3>Plasmid Construct</h3>
+
<p>
-
<img class="img-responsive" src="https://static.igem.org/mediawiki/2014/a/ae/York_Constructs.jpg">
+
<b>Gene:</b> cysP (AKA YlnA) <br>
-
<p>Look at the plasmid we're using in our project, complete with a repertoire of Cadmium related genes.</p>
+
<b>Organism:</b> <i>Bacillus Subtilis</i> <br>
-
</a>
+
<b>Protein:</b> CysP <br>
-
</button>
+
<b>Function:</b> This gene encodes for CysP, a sulfate/thiosulfate ABC transporter found in the periplasmic space. <br>
-
<button class="col-md-4 btn btn-primary home-panel">
+
<b>Aim:</b> We want to overexpress this gene in E.coli. This would lead to increased sulfate uptake, which could be used to produce cysteine and eventually phytochelatins that would bind cadmium. <br>
-
<a href="https://2014.igem.org/Team:York/SocialImpacts">
+
<b>Expression:</b> We could run assays measuring the concentration of sulfate in the environment containing our bacteria. <br>
-
<h3>Social Outreach</h3>
+
</p>
-
<img class="img-responsive" src="https://static.igem.org/mediawiki/2014/7/7d/York_Researchhomepage.jpg">
+
 
-
<p>We've been busy communicating Synthetic Biology and contemplating the sustainability and ethics of our project. </p>
+
</div>
-
</a>
+
 
-
</button>
+
<div class="tab-pane" id="six" class="collapse">
 +
<h2>CysE*</h2>
 +
<p>
 +
<b>Original Gene:</b> cysE<br>
 +
<b>Mutant Gene:</b> cysE*<br>
 +
<b>Organism:</b> <i>Escherichia Coli</i> <br>
 +
<b>Protein:</b> CysE(SAT)<br>
 +
<b>Normal function:</b> To catalyse the acetylation of L-serine (the first step in cysteine biosynthesis)<br>
 +
<b>Function:</b> Serine acetyltransferase (CysE) carries out the first step in cysteine biosynthesis; it  catalyses the acetylation of L-serine which generates O-acetyl-L-serine. Cysteine itself strongly inhibits the activity of serine acetyltransferase by binding to the serine-binding site. This inhibition depends on the protein's carboxy terminus, and has been localized to Met-256 specifically. Due to cysteine production being both energetically demanding and toxic at high concentrations, the cell does not want to produce cysteine constitutively.<br>
 +
<b>Aim:</b> To over-produce cysteine.To fulfill this aim, we need to remove negative feedback from cysteine biosynthesis. To do this, we are using a mutant CysE gene (CysE*). Our mutant CysE gene will produce a protein that has a single amino acid substitution: Met-256 will be replaced by Ile by changing the corresponding AUG codon to AUC. This single amino-acid substitution will alter the three dimensional shape of the serine-binding site in our acetyltransferase. Changing the shape of the serine-binding site prevents cysteine from binding to it. Thus, our acetyltransferase will not be inhibited by cysteine. As a result, we will be able to over-produce cysteine in our cell.<br>
 +
<b>Method:</b> We had the cysE* gene synthesised to produce the mutant CysE* protein.<br>
 +
<b>Literature:</b>  
 +
<ol>
 +
<li>http://aem.asm.org/content/66/10/4497.full</li>
 +
<li>Denk D., Bock A. <i>J. Gen. Microbiol</i>, 1987</li>
 +
</ol></p></div>
 +
 
 +
<div class="tab-pane" id="five" class="collapse">
 +
<h2>Gsh1*</h2>
 +
<p>
 +
<b>Original Gene:</b> gsh1/gshA<br>
 +
<b>Organism:</b> <i>Saccharomyces cerevisiae</i><br>
 +
<b>Protein:</b> Glutamate-Cysteine Ligase (previously known as gamma-glutamylcysteine synthetase)<br>
 +
<b>Function:</b> Gamma glutamylcysteine synthetase catalyzes the first step in glutathione (GSH) biosynthesis;<br>
 +
L-glutamate + L-cysteine + ATP -> gamma-glutamyl cysteine + ADP + Pi<br>
 +
Expression is induced by oxidants, cadmium, and mercury. Protein abundance increases in response to DNA replication stress.<br>
 +
<b>Aim:</b> We can use the overproduced cysteine to make gamma-glutamyl cysteine, which is the monomer that forms phytochelatins (n=10-20). In order to do this, we need glutamate-cysteine ligase to catalyse the reaction. We can overexpress GSH1* using the pYodA promoter. <br>
 +
<b>Literature:</b><ol><li>http://biocyc.org/YEAST/NEW-IMAGE?type=GENE-IN-MAP-IN-PWY&object=YJL101C</li></ol></p></div>
 +
 
 +
<div class="tab-pane" id="four" class="collapse">
 +
<h2>spPCS</h2>
 +
<p>
 +
<b>Gene:</b> spPCS<br>
 +
<b>Organism:</b> <i>Schizosaccharomyces pombe</i><br>
 +
<b>Function:</b> The phytochelatin synthase in S. pombe uses glutathione with a blocked thiol group  to synthesise phytochelatins.<br>
 +
<b>Aim:</b> Overexpression of this gene, together with Gsh1*, in E.coli has been shown to increase phytochelatin production and lead to a 7.5-times-higher Cd accumulation. We want to use this gene to make our bacteria more efficient in  taking up cadmium.<br>
 +
<b>Literature</b><ol><li>http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2075016/</li></ol></p></div>
-
        <div class="filter"></div>
+
</div>
-
</body>
+
</div>
 +
</div>
 +
</div>
 +
</div>
 +
</div>
 +
<!--  THE PAGE HAS ENDED. THE FOOTER BEGINS.  -->
 +
<nav class="navbar navbar-default navbar-static-bottom" id="yorkfooter">
 +
  <div class="container">
 +
    <a href="http://www.york.ac.uk/biology/" class="navbar-brand img-responsive">
 +
      <img src="https://static.igem.org/mediawiki/2014/4/4c/Uoylogo.png" id="bottomyorklogo">
 +
    </a>
 +
<p>Web design by <a href="http://www.artiq.es/" target="blank_">ARTIQ</a></p>
 +
</nav>
 +
  </body>
</html>
</html>

Revision as of 13:10, 17 October 2014

Team York 2014


Constructs




pYodA

Name: pYodA (ZinTp)
Organism: Escherichia Coli
Normal Function: pYodA is a cadmium-induced promoter that activates the yodA(zinT) gene, leading to the production of ZinT metal-binding protein.
Aim: We are using pYodA in an alternative way; to regulate the expression of the CysP gene (sulfate transporter) and the NRAMP gene (Cadmium transporter). Due to using pYodA, the expression of these two genes will be regulated by the concentration of Cadmium in the extracellular environment. The over-production of Cysteine will only occur when the concentration of Cadmium reaches the sensitivity threshold of pYodA. Due to cysteine production being both energetically demanding and toxic at high concentrations, we do not want these genes to be expressed constitutively.
Characterisation: In order to characterise pYodA, we will couple it with a GFP gene. This will allow us to calculate the sensitivity threshold of pYodA and measure the amount of cadmium that can be chelated at various concentrations.
Literature:

  1. http://mic.sgmjournals.org/content/148/12/3801.long
  2. http://www.uniprot.org/uniprot/F4VWH2
  3. http://sbkb.org/uid/F4VWH2/uniprot#structures
  4. http://www.jbc.org/content/278/44/43728
  5. http://biocyc.org/ECOLI/NEW-IMAGE?type=GENE&object=G7061

NRAMP

Gene: mntH
Organism: Escherichia Coli
Protein: NRAMP
Function: NRAMP is a membrane divalent metal-ion transporter. In addition to iron and manganese, it also transports Cd ions into the cell.
Aim: We want to use the endogenous transporter NRAMP to take up the cadmium from the environment. The cadmium will then activate pYoda and set off the phytochelatin synthesis process.
Expression: We can run assays measuring the concentration of cadmium in the environment. If NRAMP is active, the concentration of cadmium should decrease.

CysP

Gene: cysP (AKA YlnA)
Organism: Bacillus Subtilis
Protein: CysP
Function: This gene encodes for CysP, a sulfate/thiosulfate ABC transporter found in the periplasmic space.
Aim: We want to overexpress this gene in E.coli. This would lead to increased sulfate uptake, which could be used to produce cysteine and eventually phytochelatins that would bind cadmium.
Expression: We could run assays measuring the concentration of sulfate in the environment containing our bacteria.

CysE*

Original Gene: cysE
Mutant Gene: cysE*
Organism: Escherichia Coli
Protein: CysE(SAT)
Normal function: To catalyse the acetylation of L-serine (the first step in cysteine biosynthesis)
Function: Serine acetyltransferase (CysE) carries out the first step in cysteine biosynthesis; it catalyses the acetylation of L-serine which generates O-acetyl-L-serine. Cysteine itself strongly inhibits the activity of serine acetyltransferase by binding to the serine-binding site. This inhibition depends on the protein's carboxy terminus, and has been localized to Met-256 specifically. Due to cysteine production being both energetically demanding and toxic at high concentrations, the cell does not want to produce cysteine constitutively.
Aim: To over-produce cysteine.To fulfill this aim, we need to remove negative feedback from cysteine biosynthesis. To do this, we are using a mutant CysE gene (CysE*). Our mutant CysE gene will produce a protein that has a single amino acid substitution: Met-256 will be replaced by Ile by changing the corresponding AUG codon to AUC. This single amino-acid substitution will alter the three dimensional shape of the serine-binding site in our acetyltransferase. Changing the shape of the serine-binding site prevents cysteine from binding to it. Thus, our acetyltransferase will not be inhibited by cysteine. As a result, we will be able to over-produce cysteine in our cell.
Method: We had the cysE* gene synthesised to produce the mutant CysE* protein.
Literature:

  1. http://aem.asm.org/content/66/10/4497.full
  2. Denk D., Bock A. J. Gen. Microbiol, 1987

Gsh1*

Original Gene: gsh1/gshA
Organism: Saccharomyces cerevisiae
Protein: Glutamate-Cysteine Ligase (previously known as gamma-glutamylcysteine synthetase)
Function: Gamma glutamylcysteine synthetase catalyzes the first step in glutathione (GSH) biosynthesis;
L-glutamate + L-cysteine + ATP -> gamma-glutamyl cysteine + ADP + Pi
Expression is induced by oxidants, cadmium, and mercury. Protein abundance increases in response to DNA replication stress.
Aim: We can use the overproduced cysteine to make gamma-glutamyl cysteine, which is the monomer that forms phytochelatins (n=10-20). In order to do this, we need glutamate-cysteine ligase to catalyse the reaction. We can overexpress GSH1* using the pYodA promoter.
Literature:

  1. http://biocyc.org/YEAST/NEW-IMAGE?type=GENE-IN-MAP-IN-PWY&object=YJL101C

spPCS

Gene: spPCS
Organism: Schizosaccharomyces pombe
Function: The phytochelatin synthase in S. pombe uses glutathione with a blocked thiol group to synthesise phytochelatins.
Aim: Overexpression of this gene, together with Gsh1*, in E.coli has been shown to increase phytochelatin production and lead to a 7.5-times-higher Cd accumulation. We want to use this gene to make our bacteria more efficient in taking up cadmium.
Literature

  1. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2075016/