Team:StanfordBrownSpelman/Amberless Hell Cell
From 2014.igem.org
(Difference between revisions)
Line 125: | Line 125: | ||
Results go here.</h6> | Results go here.</h6> | ||
- | |||
<!-- ===== Figure ===== --> | <!-- ===== Figure ===== --> | ||
</div></div> | </div></div> | ||
- | <div class="small- | + | <div class="small-8 small-centered columns"><br><center><img src="https://static.igem.org/mediawiki/2014/0/01/SBS_AmberlessResults_Plates.png"><br> |
- | <h6><center><b>Figure #.</b> Figure caption here.</center> | + | <h6><center><b>Figure #.</b> Figure caption here.</center></h6> |
</div> | </div> | ||
<div class="row"> | <div class="row"> | ||
Line 135: | Line 134: | ||
<!-- ===== end figure ==== --> | <!-- ===== end figure ==== --> | ||
- | |||
<h6> | <h6> | ||
Line 143: | Line 141: | ||
<!-- ===== Figure ===== --> | <!-- ===== Figure ===== --> | ||
</div></div> | </div></div> | ||
- | <div class="small-7 small-centered columns"><br><center><img src="https://static.igem.org/mediawiki/2014/ | + | <div class="small-7 small-centered columns"><br><center><img src="https://static.igem.org/mediawiki/2014/e/e4/SBS_AmberlessResults_rad1.png"><br> |
<h6><center><b>Figure #.</b> Figure caption here.</center> | <h6><center><b>Figure #.</b> Figure caption here.</center> | ||
</div> | </div> | ||
Line 150: | Line 148: | ||
<!-- ===== end figure ==== --> | <!-- ===== end figure ==== --> | ||
- | |||
<h6> | <h6> | ||
Line 158: | Line 155: | ||
<!-- ===== Figure ===== --> | <!-- ===== Figure ===== --> | ||
</div></div> | </div></div> | ||
- | <div class="small- | + | <div class="small-7 small-centered columns"><br><center><img src="https://static.igem.org/mediawiki/2014/0/03/SBSiGEM_HellCell2.png"><br> |
- | <h6><center><b>Figure #.</b> Figure caption here.</center | + | <h6><center><b>Figure #.</b> Figure caption here.</center> |
</div> | </div> | ||
<div class="row"> | <div class="row"> | ||
Line 165: | Line 162: | ||
<!-- ===== end figure ==== --> | <!-- ===== end figure ==== --> | ||
+ | |||
<h6> | <h6> | ||
More results here. | More results here. |
Revision as of 07:10, 17 October 2014
Amberless Hell Cell
For an application of synthetic biology where live, genetically-modified cells will come in direct contact with the environment, such as biological sensors on a UAV, two concerns must be addressed. First, the cells need to be resistant to widely-varying conditions that may be present in the environment; second, in order to address ethical concerns about releasing genetically-modified organisms, it is desirable to reduce horizontal gene transfer from the engineered cells into cells naturally present in the environment. In order to solve both of these issues, and therefore to create an ideal chassis for synthetic biology in environmental applications, we will combine two research goals:
1. The "Hell Cell" project by the 2012 Stanford-Brown iGEM team isolated genes from extremophile bacterial species and inserted them into Escherichia coli, in order to create bacteria that are resistant to extremes in pH, temperature, and moisture. We sought to further characterize, improve, and search for new resistance genes that would help our chassis survive in earth and space applications.
2. The Church Lab at Harvard Medical School in 2013 created a strain of E. coli (C321.ΔA) in which all 321 instances of the UAG ("Amber") stop codon in the E. coli genome had been replaced with the UAA stop codon [1]. Release factor 1, which terminates translation at UAG, was also removed. With this system, the Church group incorporated artificial amino acids with a tRNA that recognizes UAG as its codon.
1. The "Hell Cell" project by the 2012 Stanford-Brown iGEM team isolated genes from extremophile bacterial species and inserted them into Escherichia coli, in order to create bacteria that are resistant to extremes in pH, temperature, and moisture. We sought to further characterize, improve, and search for new resistance genes that would help our chassis survive in earth and space applications.
2. The Church Lab at Harvard Medical School in 2013 created a strain of E. coli (C321.ΔA) in which all 321 instances of the UAG ("Amber") stop codon in the E. coli genome had been replaced with the UAA stop codon [1]. Release factor 1, which terminates translation at UAG, was also removed. With this system, the Church group incorporated artificial amino acids with a tRNA that recognizes UAG as its codon.