Team:Yale/Parts

From 2014.igem.org

(Difference between revisions)
 
(4 intermediate revisions not shown)
Line 114: Line 114:
<div style="margin-top:50px"> </div>
<div style="margin-top:50px"> </div>
<div class="callout">
<div class="callout">
-
<h1 style="margin-top:22px; font-size:50px;">Parts</h1>
+
<h1 style="margin-top:22px; font-size:50px;">Submitted Parts</h1>
</td>
</td>
</tr>
</tr>
Line 130: Line 130:
</div>
</div>
<div class="well"><p>
<div class="well"><p>
-
The collection consists of the BioBrick mussel foot protein (MFP) 1-5-1 sequence (combination of Mytilus galloprovincialis Foot Protein 5 (Mgfp-5) and Mytilus Edulis Foot Protein1 (Mefp-1)). The second BioBrick is the MFP with superfolder Green Fluorescence Protein (sfGFP). The third BioBrick is the MFP with our antimicrobial peptide of interest, LL-37. Finally, the fourth BioBrick is our entire construct of our antimicrobial peptide: 2XStrep_Flagtag_LL-37_Mussel Foot Protein_sfGFP. All biobricks are in the pSB1C3 plasmid.
+
 
 +
Our collection of submitted biobricks consists of:
 +
<ul style="list-style-type:square"> <li>Mussel foot protein (MFP) 1-5-1 sequence [combination of <i>Mytilus galloprovincialis</i> Foot Protein 5 (Mgfp-5) and <i>Mytilus Edulis</i> Foot Protein 1 (Mefp-1)]. <li>MFP with superfolder Green Fluorescence Protein (sfGFP).<li>MFP with our anti-microbial peptide, LL-37.<li> Entire construct of our anti-microbial adhesive peptide: 2XStrep_Flagtag--LL-37--Mussel Foot Protein--sfGFP. </ul>
 +
<p>
 +
<i>Note all biobricks are in the pSB1C3 plasmid.</i>
 +
 
</p></div>
</p></div>
</td>
</td>
Line 137: Line 142:
-
<tr><td colspan="2"><h2>Full construct: <a href= "http://parts.igem.org/wiki/index.php?title=Part:BBa_K1396000">BBa_K1396000</a></a></h2>
+
<tr><td colspan="2"><h2>Full Construct: <a href= "http://parts.igem.org/wiki/index.php?title=Part:BBa_K1396000">BBa_K1396000</a></a></h2>
<div class = "well">
<div class = "well">
<p>
<p>

Latest revision as of 03:39, 17 October 2014

Submitted Parts

Our collection of submitted biobricks consists of:

  • Mussel foot protein (MFP) 1-5-1 sequence [combination of Mytilus galloprovincialis Foot Protein 5 (Mgfp-5) and Mytilus Edulis Foot Protein 1 (Mefp-1)].
  • MFP with superfolder Green Fluorescence Protein (sfGFP).
  • MFP with our anti-microbial peptide, LL-37.
  • Entire construct of our anti-microbial adhesive peptide: 2XStrep_Flagtag--LL-37--Mussel Foot Protein--sfGFP.

Note all biobricks are in the pSB1C3 plasmid.

Full Construct: BBa_K1396000

The part is an coding sequence for an anti-microbial peptides linked to a mussel-foot protein-linked to superfolder GFP for localization. The mussel foot protein will anneal to surfaces as a wet glue and the antimicrobial domain is designed to interact with microbial membranes and interfere with membrane stability. In order to use this part you can produce it in a TAG recoded organism simultaneously expressing a Tyrosine supressor or L-DOPA orthogonal translational system. In order to purify you can use the 2X Strep tag and strep column and later cleave with enterokinase to remove the sequence supressing LL-37 antimicrobial action.

LL-37-MFP: BBa_K1396001

The part is an coding sequence for an anti-microbial peptides linked to a mussel-foot protein. The mussel foot protein will anneal to surfaces as a wet glue and the antimicrobial domain is designed to interact with microbial membranes and interfere with membrane stability. In order to use this part you can produce it in a TAG recoded organism simultaneously expressing a Tyrosine suppressor or L-DOPA orthogonal translational system. In order to purify you can use the 2X Strep tag and strep column and later cleave with enterokinase to remove the sequence suppressing LL-37 antimicrobial action. This is an improvement on the Utah State biobrick BBa_K1162006 which consists of only the LL-37 peptide.

MFP-sfGFP: BBa_K1396002

The part is an coding sequence for an anti-microbial peptides linked to a mussel-foot protein-linked to superfolder GFP for localization. The mussel foot protein will anneal to surfaces as a wet glue and superfolder GFP will allow for florescence imaging and localization. In order to use this part you can produce it in a TAG recoded organism simultaneously expressing a Tyrosine supressor or L-DOPA orthogonal translational system. In order to purify you can use the 2X Strep tag and strep column and later cleave with enterokinase to remove the sequence supressing LL-37 antimicrobial action.

Mussel Foot Protein 1-5-1: BBa_K1396003

Recoded and codon optimized coding sequence for the mussel foot protein 151. TAG is recoded. In order to produce the protein co-express in cells contain either an L-DOPA orthogonal translation system or a Tyrosine suppressor.

Main Campus:
Molecular, Cellular & Developmental Biology
219 Prospect Street
P.O. Box 208103
New Haven, CT 06520
Phone: 203.432.3783
igem@yale.edu
natalie.ma@yale.edu (Graduate Advisor)
Copyright (c) 2014 Yale IGEM