Team:York/Cake

From 2014.igem.org

(Difference between revisions)
Line 9: Line 9:
     <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.2.0/css/bootstrap.min.css" rel="stylesheet">
     <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.2.0/css/bootstrap.min.css" rel="stylesheet">
     <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.2.0/css/bootstrap-theme.min.css">
     <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.2.0/css/bootstrap-theme.min.css">
-
<link href="https://2014.igem.org/Team:York/newCSS.css?action=raw&amp;ctype=text/css" type="text/css" rel="stylesheet">
+
    <link href="https://2014.igem.org/Team:York/newCSS.css?action=raw&amp;ctype=text/css" type="text/css" rel="stylesheet">
<link href="//maxcdn.bootstrapcdn.com/font-awesome/4.2.0/css/font-awesome.min.css" rel="stylesheet">
<link href="//maxcdn.bootstrapcdn.com/font-awesome/4.2.0/css/font-awesome.min.css" rel="stylesheet">
 +
   </head>
   </head>
   <body>
   <body>
Line 18: Line 19:
     <!-- Include all compiled plugins (below), or include individual files as needed -->
     <!-- Include all compiled plugins (below), or include individual files as needed -->
     <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.2.0/js/bootstrap.min.js"></script>
     <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.2.0/js/bootstrap.min.js"></script>
-
<script>
+
 
-
$(document).ready(function () {
+
-
  location.hash && $(location.hash + '.collapse').collapse('show');
+
-
});
+
-
</script>
+
<div class="navbar navbar-inverse navbar-fixed-top">
<div class="navbar navbar-inverse navbar-fixed-top">
Line 40: Line 37:
<li><a href="https://2014.igem.org/Team:York">Home</a></li>
<li><a href="https://2014.igem.org/Team:York">Home</a></li>
<li><a href="https://2014.igem.org/Team:York/Team">Team</a></li>
<li><a href="https://2014.igem.org/Team:York/Team">Team</a></li>
-
<li class="dropdown">
+
<li class="dropdown active">
                                                 <a href="#" class="dropdown-toggle" data-toggle="dropdown">Project
                                                 <a href="#" class="dropdown-toggle" data-toggle="dropdown">Project
  <b class="caret"></b></a>
  <b class="caret"></b></a>
                                                 <ul class="dropdown-menu">
                                                 <ul class="dropdown-menu">
                                                         <li><a href="https://2014.igem.org/Team:York/Project">Background</a></li>
                                                         <li><a href="https://2014.igem.org/Team:York/Project">Background</a></li>
-
                                                         <li><a href="https://2014.igem.org/Team:York/Constructs">Constructs</a></li>
+
                                                         <li class="active"><a href="https://2014.igem.org/Team:York/Constructs">Constructs</a></li>
                                                         <li><a href="https://2014.igem.org/Team:York/Application">Practical Application</a></li>
                                                         <li><a href="https://2014.igem.org/Team:York/Application">Practical Application</a></li>
                                                 </ul>
                                                 </ul>
Line 60: Line 57:
</ul>
</ul>
</li>
</li>
-
<li class="dropdown active">
+
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">Lab Work
<a href="#" class="dropdown-toggle" data-toggle="dropdown">Lab Work
  <b class="caret"></b></a>
  <b class="caret"></b></a>
<ul class="dropdown-menu">
<ul class="dropdown-menu">
<li><a href="https://2014.igem.org/Team:York/Notebook">Notebook</a></li>
<li><a href="https://2014.igem.org/Team:York/Notebook">Notebook</a></li>
-
<li class="active"><a href="https://2014.igem.org/Team:York/Protocols">Protocols</a></li>
+
<li><a href="https://2014.igem.org/Team:York/Protocols">Protocols</a></li>
 +
                                                        <li><a href="https://2014.igem.org/Team:York/Characterisation">Characterisation</a></li>
</ul>
</ul>
</li>
</li>
<li><a href="https://2014.igem.org/Team:York/Sponsors">Sponsors</a></li>
<li><a href="https://2014.igem.org/Team:York/Sponsors">Sponsors</a></li>
-
                                        <li><a href="https://twitter.com/iGEMyork" target="_blank"><i class="fa fa-twitter fa-lg"></i></a></li>
+
<li><a href="https://twitter.com/iGEMyork" target="_blank"><i class="fa fa-twitter fa-lg"></i></a></li>
                                         <li><a href="mailto:igemyork2014@gmail.co.uk" target="_blank"><i class="fa fa-envelope fa-lg"></i></a></li>
                                         <li><a href="mailto:igemyork2014@gmail.co.uk" target="_blank"><i class="fa fa-envelope fa-lg"></i></a></li>
</ul>
</ul>
Line 78: Line 76:
</div><br>
</div><br>
<!--  THE TOP HAS ENDED. THE REST OF THE PAGE BEGINS.  -->
<!--  THE TOP HAS ENDED. THE REST OF THE PAGE BEGINS.  -->
-
<div class="container">
+
      <div class="container">
-
<div class="jumbotron">
+
<div class="jumbotron">
<div class="row">
<div class="row">
-
<div class="col-lg-12">
+
<div class="col-lg-8">
-
 
+
<h1>Constructs</h1>
-
<!-- Put all the content under here... -->
+
-
<h1>Laboratory Protocols</h1>
+
<hr>
<hr>
-
<div class="col-md-3">
+
<img class="img-responsive img-max-650" src="https://static.igem.org/mediawiki/2014/a/ae/York_Constructs.jpg">
 +
<br><br>
<ul class="nav nav-tabs" role="tablist" id="myTab">
<ul class="nav nav-tabs" role="tablist" id="myTab">
-
     <li class="active"><a href="#one" role="tab" data-toggle="tab">LB Media</a></li>
+
     <li class="active"><a href="#one" role="tab" data-toggle="tab">pYodA</a></li>
-
     <li><a href="#two" role="tab" data-toggle="tab">LA Media</a></li>
+
     <li><a href="#two" role="tab" data-toggle="tab">NRAMP</a></li>
-
     <li><a href="#three" role="tab" data-toggle="tab">Plasmid Purification</a></li>
+
     <li><a href="#three" role="tab" data-toggle="tab">CysP</a></li>
-
    <li><a href="#gel" role="tab" data-toggle="tab">Gel Electrophoresis</a></li>
+
     <li><a href="#four" role="tab" data-toggle="tab">SpPCS</a></li>
-
     <li><a href="#four" role="tab" data-toggle="tab">Gel Extraction</a></li>
+
     <li><a href="#five" role="tab" data-toggle="tab">Gsh1*</a></li>
-
     <li><a href="#five" role="tab" data-toggle="tab">SOC Media</a></li>
+
     <li><a href="#six" role="tab" data-toggle="tab">CysE*</a></li>
-
     <li><a href="#six" role="tab" data-toggle="tab">Competent Cells</a></li>
+
</ul>
</ul>
-
</div>
 
-
<div class="tab-content col-md-9">
+
<div class="tab-content">
-
    <div class="tab-pane active" id="one">
+
<div class="tab-pane active" id="one" class="collapse">
-
<h2>Lysogeny Broth</h2>
+
<h2>pYodA</h2>
-
<h3>Materials</h3>
+
<p>
-
<ul>
+
<b>Name:</b> pYodA (ZinTp) <br>
-
<li>10g of tryptone</li>
+
<b>Organism:</b> <i>Escherichia Coli</i> <br>
-
<li>5g of yeast extract</li>
+
<b>Normal Function:</b> pYodA is a cadmium-induced promoter that activates the yodA(zinT) gene, leading to the production of ZinT metal-binding protein.<br>
-
<li>10g of NaCl</li>
+
<b>Aim:</b> We are using pYodA in an alternative way; to regulate the expression of the CysP gene (sulfate transporter) and the NRAMP gene (Cadmium transporter). Due to using pYodA, the expression of these two genes will be regulated by the concentration of Cadmium in the extracellular environment. The over-production of Cysteine will only occur when the concentration of Cadmium reaches the sensitivity threshold of pYodA. Due to cysteine production being both energetically demanding and toxic at high concentrations, we do not want these genes to be expressed constitutively. <br>
-
<li>1L of Deionised Water</li>
+
<b>Characterisation:</b> In order to characterise pYodA, we will couple it with a GFP gene. This will allow us to calculate the sensitivity threshold of pYodA and measure the amount of cadmium that can be chelated at various concentrations. <br>
-
</ul>
+
<b>Literature:</b>
-
 
+
-
<h3>Procedure</h3>
+
<ol>
<ol>
-
<li>Use a container a container with at least double the volume of the LB that you are making.</li>
+
<li>http://mic.sgmjournals.org/content/148/12/3801.long</li>
-
<li>Measure out the weights of tryptone, yeast extract and sodium chloride as above then fill up with deionised water to 1l and mix well until clear.</li>
+
<li>http://www.uniprot.org/uniprot/F4VWH2</li>
-
<li>Ensure the lid is unscrewed by two and a half turns</li>
+
<li>http://sbkb.org/uid/F4VWH2/uniprot#structures</li>
-
<li>Send to be autoclaved</li>
+
<li>http://www.jbc.org/content/278/44/43728</li>
 +
<li>http://biocyc.org/ECOLI/NEW-IMAGE?type=GENE&object=G7061</li>
</ol>
</ol>
-
    </div>
+
</p>
 +
</div>
-
    <div class="tab-pane" id="two">
+
<div class="tab-pane" id="two" class="collapse">
 +
<h2>NRAMP</h2>
 +
<p>
 +
<b>Gene:</b> mntH<br>
 +
<b>Organism:</b> <i>Escherichia Coli</i><br>
 +
<b>Protein:</b> NRAMP<br>
 +
<b>Function:</b> NRAMP is a membrane divalent metal-ion transporter. In addition to iron and manganese, it also transports Cd ions into the cell.<br>
 +
<b>Aim:</b> We want to use the endogenous transporter NRAMP to take up the cadmium from the environment. The cadmium will then activate pYoda and set off the phytochelatin synthesis process.<br>
 +
<b>Expression:</b> We can run assays measuring the concentration of cadmium in the environment. If NRAMP is active, the concentration of cadmium should decrease.<br></p></div>
-
<h2>Lysogeny Agar</h2>
+
<div class="tab-pane" id="three" class="collapse">
-
<h3>Materials</h3>
+
-
<ul>
+
-
<li>10g of tryptone</li>
+
-
<li>5g of yeast extract</li>
+
-
<li>10g of NaCl</li>
+
-
<li>15g of agar </li>
+
-
<li>1L of Deionised Water</li>
+
-
</ul>
+
-
<h3>Procedure</h3>
+
<h2>CysP</h2>
-
<ol>
+
<p>
-
<li>Use a container a container with at least double the volume of the LA that you are making.</li>
+
<b>Gene:</b> cysP (AKA YlnA) <br>
-
<li>Measure out the weights of tryptone, yeast extract, sodium chloride and agar with deionised water to 1l and mix well.</li>
+
<b>Organism:</b> <i>Bacillus Subtilis</i> <br>
-
<li>Ensure the lid is unscrewed by two and a half turns.</li>
+
<b>Protein:</b> CysP <br>
-
<li>Send to be autoclaved.</li>
+
<b>Function:</b> This gene encodes for CysP, a sulfate/thiosulfate ABC transporter found in the periplasmic space. <br>
-
<li>Pour the plates next to a Bunsen burner. </li>
+
<b>Aim:</b> We want to overexpress this gene in E.coli. This would lead to increased sulfate uptake, which could be used to produce cysteine and eventually phytochelatins that would bind cadmium. <br>
-
<li>Leave for 15-20 minutes to set/solidify. </li>
+
<b>Expression:</b> We could run assays measuring the concentration of sulfate in the environment containing our bacteria. <br>
-
</ol>
+
</p>
-
    </div>
+
</div>
-
    <div class="tab-pane" id="three">
+
<div class="tab-pane" id="six" class="collapse">
-
 
+
<h2>CysE*</h2>
-
<h2>Mini-Prep or Plasmid Purification</h2>
+
<p>
-
<ul>
+
<b>Original Gene:</b> cysE<br>
-
<li>Harvest bacterial cells<br>
+
<b>Mutant Gene:</b> cysE*<br>
-
1. Pellet 20ml of saturated E. coli for 60 seconds  at 11,000 x g.<br>
+
<b>Organism:</b> <i>Escherichia Coli</i> <br>
-
2. Discard supernatant and remove as much liquid as possible.</li>
+
<b>Protein:</b> CysE(SAT)<br>
-
<li>Lyse cells<br>
+
<b>Normal function:</b> To catalyse the acetylation of L-serine (the first step in cysteine biosynthesis)<br>
-
1. Add 500ml Resuspension Buffer P1 and resuspend cell pellet by vortexing.<br>
+
<b>Function:</b> Serine acetyltransferase (CysE) carries out the first step in cysteine biosynthesis; it  catalyses the acetylation of L-serine which generates O-acetyl-L-serine. Cysteine itself strongly inhibits the activity of serine acetyltransferase by binding to the serine-binding site. This inhibition depends on the protein's carboxy terminus, and has been localized to Met-256 specifically. Due to cysteine production being both energetically demanding and toxic at high concentrations, the cell does not want to produce cysteine constitutively.<br>
-
2. Split the solution into two 1.5ml microcentrifuge tubes.<br>
+
<b>Aim:</b> To over-produce cysteine.To fulfill this aim, we need to remove negative feedback from cysteine biosynthesis. To do this, we are using a mutant CysE gene (CysE*). Our mutant CysE gene will produce a protein that has a single amino acid substitution: Met-256 will be replaced by Ile by changing the corresponding AUG codon to AUC. This single amino-acid substitution will alter the three dimensional shape of the serine-binding site in our acetyltransferase. Changing the shape of the serine-binding site prevents cysteine from binding to it. Thus, our acetyltransferase will not be inhibited by cysteine. As a result, we will be able to over-produce cysteine in our cell.<br>
-
3. Add 250μl Lysis Buffer 2. <br>
+
<b>Method:</b> We had the cysE* gene synthesised to produce the mutant CysE* protein.<br>
-
4. Mix gently by inverting tube 8 times. <br>
+
<b>Literature:</b>  
-
5. Incubate at room temperature for five minutes or until lysate appears clear.<br>
+
-
6. Add 300μl Neutralization Buffer 3.<br>
+
-
7. Mix thoroughly by inverting tube 8 times.</li>
+
-
<li>Clarification of lysate<br>
+
-
1. Centrifuge for five minutes at 11,000 x g at room temperature<br>
+
-
2. Put 500μl of Buffer PW1 per 1.5ml microcentrifuge tube used in heat block heated to 50օC</li>
+
-
<li>Bind DNA<br>
+
-
1. Place ISOLATE II Plasmid Mini Spin Column in a 2ml Collection Tube<br>
+
-
2. Pipette a maximum of 750μl of clarified sample supernatant onto column<br>
+
-
3. Incubate at room temperature for two minutes.<br>
+
-
4. Centrifuge for one minute at 11,000 x g and discard flow-through.<br>
+
-
5. Repeat stage 4 using the same ISOLATE II Plasmid Mini Spin Column and 2ml Collection Tube with the clarified sample supernatant from the other 1.5ml microcentrifuge tube from the same sample.</li>
+
-
<li>Wash silica membrane<br>
+
-
1. Add 500μl Wash Buffer Pw1<br>
+
-
2. Centrifuge for one minute at 11,000 x g <br>
+
-
3. Add 600μl Wash Buffer PW2 (supplemented with ethanol)<br>
+
-
4. Centrifuge for one minute at 11,000 x g <br>
+
-
5. Discard flow-through and reuse Collection Tube</li>
+
-
<li>Dry silica membrane<br>
+
-
1. Centrifuge for two minutes at 11,000 x g, to remove residual ethanol<br>
+
-
2. Place ISOLATE II Plasmid Mini Spin Column in a 1.5ml microcentrifuge tube.</li>
+
-
<li>Elute DNA<br>
+
-
1. Add 50μl Elution Buffer P directly on the top of the silicon matrix<br>
+
-
2. Incubate at room temperature for two minutes<br>
+
-
3. Centrifuge for one minute at 11,000 x g.</li>
+
-
</ul>
+
-
 
+
-
    </div>
+
-
 
+
-
    <div class="tab-pane" id="gel">
+
-
 
+
-
<h2>Gel Electrophoresis</h2>
+
-
 
+
-
<h3>Materials</h3>
+
-
For a 1% Agarose Gel:
+
-
<ul>
+
-
<li>1g Agarose</li>
+
-
<li>100ml de-ionised water</li>
+
-
<li>10&#956;l sybrsafe&#8482;</li>
+
-
<li>Loading Buffer</li>
+
-
<li>Masking Tape</li>
+
-
</ul>
+
-
 
+
-
<h3>Procedure</h3>
+
-
<b>Make 1% Agarose Gel:</b>
+
<ol>
<ol>
-
<li>Dissolve 1g of agarose in 100ml of deionised water.</li>
+
<li>http://aem.asm.org/content/66/10/4497.full</li>
-
<li>Microwave for 2 minutes and check it is all dissolved.</li>
+
<li>Denk D., Bock A. <i>J. Gen. Microbiol</i>, 1987</li>
-
<li>Wait for it to cool</li>
+
</ol></p></div>
-
<li>Add the sybrsafe (10&#8482;l) pour the gel into the mold and leave it to set for 15 minutes.</li>
+
-
</ol>
+
-
<b>Preparing DNA samples to load into wells in the gel.</b><br>
+
-
Add loading buffer to your DNA samples to help visualise the DNA running through the gel.<br>
+
-
<b>Performing gel electrophoresis:</b>
+
-
<ol>
+
-
<li>Inject your DNA samples into the appropriate wells and use a HyperLadder for reference (left hand side).</li>
+
-
<li>Turn on the machine and make sure the black lead is attached to the black end and the red lead is attached to the red end. <i>Black is negative, Red is positive.</i> The DNA will move towards the red because it is negative.</li>
+
-
<li>Leave gel running for at around 30 minutes.</li>
+
-
<li>Take to U:Genius Image Capture in biolab one to see the DNA bands under UV light. Do not leave the UV light on for too long before taking the photo as this can degrade the DNA.</li>
+
-
</ol>
+
-
    </div>
+
<div class="tab-pane" id="five" class="collapse">
 +
<h2>Gsh1*</h2>
 +
<p>
 +
<b>Original Gene:</b> gsh1/gshA<br>
 +
<b>Organism:</b> <i>Saccharomyces cerevisiae</i><br>
 +
<b>Protein:</b> Glutamate-Cysteine Ligase (previously known as gamma-glutamylcysteine synthetase)<br>
 +
<b>Function:</b> Gamma glutamylcysteine synthetase catalyzes the first step in glutathione (GSH) biosynthesis;<br>
 +
L-glutamate + L-cysteine + ATP -> gamma-glutamyl cysteine + ADP + Pi<br>
 +
Expression is induced by oxidants, cadmium, and mercury. Protein abundance increases in response to DNA replication stress.<br>
 +
<b>Aim:</b> We can use the overproduced cysteine to make gamma-glutamyl cysteine, which is the monomer that forms phytochelatins (n=10-20). In order to do this, we need glutamate-cysteine ligase to catalyse the reaction. We can overexpress GSH1* using the pYodA promoter. <br>
 +
<b>Literature:</b><ol><li>http://biocyc.org/YEAST/NEW-IMAGE?type=GENE-IN-MAP-IN-PWY&object=YJL101C</li></ol></p></div>
-
    <div class="tab-pane" id="four">
+
<div class="tab-pane" id="four" class="collapse">
 +
<h2>spPCS</h2>
 +
<p>
 +
<b>Gene:</b> spPCS<br>
 +
<b>Organism:</b> <i>Schizosaccharomyces pombe</i><br>
 +
<b>Function:</b> The phytochelatin synthase in S. pombe uses glutathione with a blocked thiol group  to synthesise phytochelatins.<br>
 +
<b>Aim:</b> Overexpression of this gene, together with Gsh1*, in E.coli has been shown to increase phytochelatin production and lead to a 7.5-times-higher Cd accumulation. We want to use this gene to make our bacteria more efficient in  taking up cadmium.<br>
 +
<b>Literature</b><ol><li>http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2075016/</li></ol></p></div>
-
<h2>Agarose Gel Extraction</h2>
 
-
1. Excise and dissolve gel slice<br>
 
-
2. Using a clean scalpel excise DNA fragment from gel<br>
 
-
3. Remove excess agarose, determine weight of gel slice and transfer into a clean tube<br>
 
-
4. Add 200μl Binding Buffer CB per 100mg of 2% agarose gel<br>
 
-
5. Incubate sample at 50օC for ten minutes, vortexing sample briefly every three minutes until gel slice is completely dissolved<br>
 
-
6. Incubate at room temperature for two minutes<br>
 
-
<strong>Bind DNA</strong><br>
 
-
1. Place ISOLATE II PCR and Gel Column in a 2ml Collection Tube and load 600μl of the sample<br>
 
-
2. Centrifuge for thirty seconds at 11,000 x g and discard flow-through<br>
 
-
3. Reuse collection tube for step 3<br>
 
-
<strong>Wash silica membrane</strong><br>
 
-
1. Add 700μl Wash Buffer CW to ISOLATE II PCR and Gel Column<br>
 
-
2. Centrifuge for thirty seconds at 11,000 x g<br>
 
-
3. Discard flow-through and place column back into collection tube<br>
 
-
4. Repeat step three to minimize chaotropic salt carry-over<br>
 
-
<strong> Dry silica membrane</strong><br>
 
-
1. Centrifuge for one minute at 11,000 x g, to remove residual ethanol<br>
 
-
2. Place ISOLATE II PCR and Gel Column in a 1.5ml microcentrifuge tube<br>
 
-
<h3>Elute DNA</h3>
 
-
1. Incubate at room temperature for three minutes <br>
 
-
2. Add 15-30μl Elution Buffer C directly onto silica membrane<br>
 
-
3. Incubate at room temperature for three minutes<br>
 
-
4. Centrifuge for one minute at 11,000 x g.
 
-
 
-
    </div>
 
-
 
-
    <div class="tab-pane" id="five">
 
-
 
-
<h2>SOC Media</h2>
 
-
<h3>Materials</h3>
 
-
<p>To make 100ml SOC Media</p>
 
-
<ul>
 
-
<li>2g Tryptone</li>
 
-
<li>0.5g Yeast Extract</li>
 
-
<li>2.5ml 400mM NaCl</li>
 
-
<li>625&#956;l 400mM KCl</li>
 
-
<li>10ml 100mM MgCl<small>2</small></li>
 
-
<li>1ml 200mM Autoclaved and filter sterilised Glucose</li>
 
-
</ul>
 
-
 
-
<h3>Procedure</h3>
 
-
<ol>
 
-
<li>Weigh out tryptone and yeast extract into vessel suitable for autoclaving. Add the NaCl, KCl, MgCl<small>2</small> to the bottle.</li>
 
-
<li>Make up to 100ml with Distilled Water.</li>
 
-
<li>Make glucose solution in a vessel suitable for autoclaving.</li>
 
-
<li>Autoclave both solutions separately to avoid the reaction of glucose with other components.</li>
 
-
<li>Add 1ml glucose solution using a filter sterilisation syringe to the media.</li>
 
-
</ol>
 
-
    </div>
 
-
 
-
    <div class="tab-pane" id="six">
 
-
<h2>Competent Cell Production</h2>
 
-
 
-
<h3>Materials</h3>
 
-
<ul>
 
-
<li>100ml LB + 5ml for overnight culture</li>
 
-
<li>100mM CaCl<small>2</small></li>
 
-
<li>85mM CaCl<small>2</small>, 15% glycerol v/v
 
-
</ul>
 
-
 
-
<h3>Procedure</h3>
 
-
<ol>
 
-
<li>Streak competent cells onto agar plate and incubate overnight at 37 <small>O</small>C</li>
 
-
<li>Prepare and autoclave above solutions.<br>
 
-
Inoculate a single colony into 5ml LB in a 50 ml falcon tube. Grow overnight at 37 <small>O</small>C, shaking at 200rpm.<br>
 
-
Keep solutions at 4 <small>O</small>C overnight, and LB at 37 <small>O</small>C so that when cells get transferred they do not experience a temperature change.</li>
 
-
<li>Pre-cool the rotor of the centrifuge.<br>
 
-
Use 1 ml of overnight culture to inoculate 100ml of LB in a 250ml bottle. Shake at 37 <small>O</small>C for 1.5-3 hours, until OD650 reaches 0.4-0.6.<br>
 
-
Put cells on ice for 10 mins (keep cold from now on, and cool everything on ice before adding). Split into 2 x 50ml falcon tubes.<br>
 
-
Centrifuge in the big centrifuge for 3 mins at 5000 rpm.<br>
 
-
Decant supernatant and gently resuspend in 5ml cold 100mM CaCl<small>2</small> by inverting tube slowly. (Cells susceptible to mechanical disruption)<br>
 
-
Incubate on ice for 20mins<br>
 
-
Centrifuge as before (3 mins at 5000 rpm)<br>
 
-
Discard supernatant and resuspend in 2.5ml cold 100mM CaCl<small>2</small>/ 15% glycerol v/v<br>
 
-
Pipette into microtubes and freeze in -80<small>O</small>C. (100µl per tube).</li>
 
-
</ol>
 
-
 
-
    </div>
 
</div>
</div>
-
 
-
 
-
<!-- ...But above here! -->
 
-
</p>
 
-
 
</div>
</div>
 +
</div>
</div>
</div>
</div>
</div>
-
</div>
 
</div>
</div>
<!--  THE PAGE HAS ENDED. THE FOOTER BEGINS.  -->
<!--  THE PAGE HAS ENDED. THE FOOTER BEGINS.  -->
-
<nav class="navbar navbar-default navbar-static-bottom" id="yorkfooter">
+
<nav class="navbar navbar-default navbar-static-bottom" role="contact" id="yorkfooter">
   <div class="container">
   <div class="container">
     <a href="http://www.york.ac.uk/biology/" class="navbar-brand img-responsive">
     <a href="http://www.york.ac.uk/biology/" class="navbar-brand img-responsive">
       <img src="https://static.igem.org/mediawiki/2014/4/4c/Uoylogo.png" id="bottomyorklogo">
       <img src="https://static.igem.org/mediawiki/2014/4/4c/Uoylogo.png" id="bottomyorklogo">
     </a>
     </a>
 +
  </div>
</nav>
</nav>
   </body>
   </body>
</html>
</html>

Revision as of 20:36, 16 October 2014

Team York 2014


Constructs




pYodA

Name: pYodA (ZinTp)
Organism: Escherichia Coli
Normal Function: pYodA is a cadmium-induced promoter that activates the yodA(zinT) gene, leading to the production of ZinT metal-binding protein.
Aim: We are using pYodA in an alternative way; to regulate the expression of the CysP gene (sulfate transporter) and the NRAMP gene (Cadmium transporter). Due to using pYodA, the expression of these two genes will be regulated by the concentration of Cadmium in the extracellular environment. The over-production of Cysteine will only occur when the concentration of Cadmium reaches the sensitivity threshold of pYodA. Due to cysteine production being both energetically demanding and toxic at high concentrations, we do not want these genes to be expressed constitutively.
Characterisation: In order to characterise pYodA, we will couple it with a GFP gene. This will allow us to calculate the sensitivity threshold of pYodA and measure the amount of cadmium that can be chelated at various concentrations.
Literature:

  1. http://mic.sgmjournals.org/content/148/12/3801.long
  2. http://www.uniprot.org/uniprot/F4VWH2
  3. http://sbkb.org/uid/F4VWH2/uniprot#structures
  4. http://www.jbc.org/content/278/44/43728
  5. http://biocyc.org/ECOLI/NEW-IMAGE?type=GENE&object=G7061

NRAMP

Gene: mntH
Organism: Escherichia Coli
Protein: NRAMP
Function: NRAMP is a membrane divalent metal-ion transporter. In addition to iron and manganese, it also transports Cd ions into the cell.
Aim: We want to use the endogenous transporter NRAMP to take up the cadmium from the environment. The cadmium will then activate pYoda and set off the phytochelatin synthesis process.
Expression: We can run assays measuring the concentration of cadmium in the environment. If NRAMP is active, the concentration of cadmium should decrease.

CysP

Gene: cysP (AKA YlnA)
Organism: Bacillus Subtilis
Protein: CysP
Function: This gene encodes for CysP, a sulfate/thiosulfate ABC transporter found in the periplasmic space.
Aim: We want to overexpress this gene in E.coli. This would lead to increased sulfate uptake, which could be used to produce cysteine and eventually phytochelatins that would bind cadmium.
Expression: We could run assays measuring the concentration of sulfate in the environment containing our bacteria.

CysE*

Original Gene: cysE
Mutant Gene: cysE*
Organism: Escherichia Coli
Protein: CysE(SAT)
Normal function: To catalyse the acetylation of L-serine (the first step in cysteine biosynthesis)
Function: Serine acetyltransferase (CysE) carries out the first step in cysteine biosynthesis; it catalyses the acetylation of L-serine which generates O-acetyl-L-serine. Cysteine itself strongly inhibits the activity of serine acetyltransferase by binding to the serine-binding site. This inhibition depends on the protein's carboxy terminus, and has been localized to Met-256 specifically. Due to cysteine production being both energetically demanding and toxic at high concentrations, the cell does not want to produce cysteine constitutively.
Aim: To over-produce cysteine.To fulfill this aim, we need to remove negative feedback from cysteine biosynthesis. To do this, we are using a mutant CysE gene (CysE*). Our mutant CysE gene will produce a protein that has a single amino acid substitution: Met-256 will be replaced by Ile by changing the corresponding AUG codon to AUC. This single amino-acid substitution will alter the three dimensional shape of the serine-binding site in our acetyltransferase. Changing the shape of the serine-binding site prevents cysteine from binding to it. Thus, our acetyltransferase will not be inhibited by cysteine. As a result, we will be able to over-produce cysteine in our cell.
Method: We had the cysE* gene synthesised to produce the mutant CysE* protein.
Literature:

  1. http://aem.asm.org/content/66/10/4497.full
  2. Denk D., Bock A. J. Gen. Microbiol, 1987

Gsh1*

Original Gene: gsh1/gshA
Organism: Saccharomyces cerevisiae
Protein: Glutamate-Cysteine Ligase (previously known as gamma-glutamylcysteine synthetase)
Function: Gamma glutamylcysteine synthetase catalyzes the first step in glutathione (GSH) biosynthesis;
L-glutamate + L-cysteine + ATP -> gamma-glutamyl cysteine + ADP + Pi
Expression is induced by oxidants, cadmium, and mercury. Protein abundance increases in response to DNA replication stress.
Aim: We can use the overproduced cysteine to make gamma-glutamyl cysteine, which is the monomer that forms phytochelatins (n=10-20). In order to do this, we need glutamate-cysteine ligase to catalyse the reaction. We can overexpress GSH1* using the pYodA promoter.
Literature:

  1. http://biocyc.org/YEAST/NEW-IMAGE?type=GENE-IN-MAP-IN-PWY&object=YJL101C

spPCS

Gene: spPCS
Organism: Schizosaccharomyces pombe
Function: The phytochelatin synthase in S. pombe uses glutathione with a blocked thiol group to synthesise phytochelatins.
Aim: Overexpression of this gene, together with Gsh1*, in E.coli has been shown to increase phytochelatin production and lead to a 7.5-times-higher Cd accumulation. We want to use this gene to make our bacteria more efficient in taking up cadmium.
Literature

  1. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2075016/