<div class="sub4"><a href="work/PUT-PDF-REFERENCE-HEREpdf" target="_blank"><img src="https://static.igem.org/mediawiki/2014/2/25/SBS_iGEM_2014_download.png"></a><a href="work/PUT-PDF-REFERENCE-HEREpdf">Click here to go to our project journal, which details our design and engineering process and included descriptions of the protocols we developed and used.</a></div>
+
<div class="sub4"><a href="work/PUT-PDF-REFERENCE-HEREpdf" target="_blank"><img src=""></a><a href="work/PUT-PDF-REFERENCE-HEREpdf">Click here to go to our project journal, which details our design and engineering process and included descriptions of the protocols we developed and used.</a></div>
</h6>
</h6>
</div>
</div>
Line 98:
Line 106:
<h5><center>Results</h5>
<h5><center>Results</h5>
<h6>
<h6>
-
Our initial approach was to include two identical cellulose-binding domains on either side of the streptavidin domain. However, this led to numerous problems with molecular cloning due to the repetitive nature of the sequence. We changed our approach to using two cellulose-binding domains with different sequences. This allowed us to successfully conduct the molecular cloning.
+
Our initial approach was to include two identical cellulose-binding domains on either side of the streptavidin domain. Due to the repetitive nature of the sequence and potential homologous recombination, we had many issues with molecular cloning. We changed our approach to using two different cellulose-binding domains with different sequences. This allowed us to successfully conduct the molecular cloning.
The goal of this subproject is to create a cellulose cross-linking protein to increase material strength and allow for the modular attachment of biological sensors. This fusion protein contains two distinct cellulose-binding domains[1] on either side of a streptavidin domain. The cellulose-binding domains cross link the cellulose fibers while the streptavidin serves as a binding domain for biological sensors. The interaction between SA (streptavidin) and biotin is one of the strongest non-covalent interactions in nature [2]. Therefore a cell expressing an outer membrane protein that has been biotinylated will bind tightly to this domain. This will allow our UAV to make use of a number of biological sensors.
Our initial approach was to include two identical cellulose-binding domains on either side of the streptavidin domain. Due to the repetitive nature of the sequence and potential homologous recombination, we had many issues with molecular cloning. We changed our approach to using two different cellulose-binding domains with different sequences. This allowed us to successfully conduct the molecular cloning.
References
1. M Linder and T T Teeri (1996) The cellulose-binding domain of the major cellobiohydrolase of Trichoderma reesei exhibits true reversibility and a high exchange rate on crystalline cellulose. PNAS 122251 PMID: 24136966.
2. Claire E. CHIVERS, Apurba L. KONER, Edward D. LOWE and Mark HOWARTH (2011) How the biotin–streptavidin interaction was made even stronger:
investigation via crystallography and a chimaeric tetramerBiochem.J. 55 PMID: 2981802.
Additional Information
Try to avoid having any additional information here. We're trying to keep our site organized, clean, and compelling!